

Agent-oriented Constructivist

Knowledge Management
Renata S. S. Guizzardi

Enschede, The Netherlands, 2006

CTIT PhD Thesis Series, No. 06-78

Samenstelling promotiecommissie:

Vorzitter, secretaris: prof.dr.ir. A. J. Mouthaan (Universiteit Twente)

Promotor: prof.dr. D. Konstantas (University of Geneva)

Assistent Promotor: dr.ir. M.J. van Sinderen (Universiteit Twente)

Leden: prof.dr. G. Wagner (Brandenburg University of Technology at Cottbus)

prof.dr. J. Mylopoulos (University of Toronto)

prof.dr.ir. A. Nijholt (Universiteit Twente)

prof.dr. B. Collis (Universiteit Twente)

dr. L. Aroyo (Eindhoven University of Technology)

CTIT PhD.-thesis series, No. 06-78

ISSN 1381-3617; No. 06-78

ISBN 90-365-2313-3

Centre For Telematics and Information Technology, University of Twente

P.O. Box 217, 7500 AE Enschede, The Netherlands

c© 2006, R.S.S. Guizzardi, The Netherlands

All rights reserved. Subject to exceptions provided for by law, no part of this publication may be repro-

duced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,

photocopying, recording or otherwise, without the prior written permission of the copyright owner. No

part of this publication may be adapted in whole or in part without the prior written permission of the

author.

AGENT-ORIENTED CONSTRUCTIVIST

KNOWLEDGE MANAGEMENT

PROEFSCHRIFT

ter verkrijging van

de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus

prof.dr. W.H.M. Zijm,

volgens besluit van het College voor Promoties

in het openbaar te verdedigen

op donderdag 9 februari 2006 om 15.00 uur

door

Renata Silva Souza Guizzardi

geboren op 19 november 1974

te Volta Redonda, Brazilië

Dit proefschrift is goedgekeurd door:

prof.dr. D. Konstantas (promotor) en dr.ir. M.J. van Sinderen

(assistent-promotor).

To each member of my family,

for contributing to this endeavor

in countless ways.

To my husband, Giancarlo Guizzardi,

because life without you would be comparable

to Brazil without football, Holland without bicycles,

and Italy without pasta... simply unconceivable!

Preface

In Ancient Times, when written language was introduced, books and manu-

scripts were often considered sacred. During these times, only a few persons

were able to read and interpret them, while most people were limited in

accepting these interpretations. Then, along with the industrial revolution

of the XVIII and XIX centuries and especially boosted by the development

of the press, knowledge slowly became available to all people. Simultane-

ously, people were starting to apply machines in the development of their

work, usually characterized by repetitive processes, and especially focused

in the production of consuming goods, such as furniture, clocks, clothes and

so on. Following the needs of this new society, it was finally through sci-

ence that new processes emerged to enable the transmission of knowledge

from books and instructors to learners. Still today, people gain knowledge

based on these processes, created to fulfill the needs of a society in its early

stages of industrialization, thus not being compatible with the needs of the

information society.

In the information society, people must deal with an overloading amount

of information, by the means of the media, books, besides different telecom-

munication and information systems technology. Furthermore, people’s re-

lation to work has been influenced by profound changes, for instance, knowl-

edge itself is now regarded as a valuable work product and, thus, the work-

place has become an environment of knowledge creation and learning. Mod-

ifications in the world economical, political and social scenarios led to the

conclusion that knowledge is the differential that can lead to innovation and,

consequently, save organizations, societies, and even countries from failing

vii

viii

in achieving their main goals.

Focusing on these matters is the Knowledge Management (KM) research

area, which deals with the creation, integration and use of knowledge, aiming

at improving the performance of individuals and organizations. Advances in

this field are mainly motivated by the assumption that organizations should

focus on knowledge assets (generally maintained by the members of an or-

ganization) to remain competitive in the information society’s market. This

thesis argues that KM initiatives should be targeted based on a construc-

tivist perspective. In general, a constructivist view on KM focuses on how

knowledge emerges, giving great importance to the knowledge holders and

their natural practices.

With the paragraph above, the reader may already have an intuition of

how this work faces and targets Knowledge Management, however, let us be

more precise. Research in Knowledge Management has evolved substantially

in the past 30 years, coming from a centralized view of KM processes to a dis-

tributed view, grounded in organizational and cognitive sciences studies that

point out the social, distributed, and subjective nature of knowledge. The

first Knowledge Management Systems (KMSs) were centrally based and fol-

lowed a top-down design approach. The organization managers, supported

by knowledge engineers, collected and structured the contents of an organi-

zational memory as a finished product at design time (before the organiza-

tional memory was deployed) and then disseminated the product, expecting

employees to use it and update it. However, employees often claimed that

the knowledge stored in the repository was detached from their real work-

ing practices. This led to the development of evolutionary methods, which

prescribe that the basic KM system is initially developed and evolves proac-

tively in an on-going fashion. However, most of the initiatives are still based

on building central repositories and portals, which assume standardized vo-

cabularies, languages, and classification schemes. Consequently, employees’

lack of trust and motivation often lead to dissatisfaction. In other words,

workers resist on sharing knowledge, since they do not know who is going

to access it and what is going to be done with it. Moreover, the importance

attributed to knowledge may give an impression that these central systems

ix

take away a valuable asset from his or her owner, without giving appreciable

benefits in return.

The problems highlighted in the previous paragraph may be attenuated

or even solved if a top-down/bottom-up strategy is applied when proposing

a KM solution. This means that the solution should be sought with aim at

organizational goals (top-down) but at the same time, more attention should

be given to the knowledge holders and on the natural processes they already

use to share knowledge (bottom-up). Being active agency such an important

principle of Constructivism, this work recognizes that the Agent Paradigm

(first defined by Artificial Intelligence and more recently adopted by Software

Engineering) is the best approach to target Knowledge Management, taking

a technological and social perspective. Capable of modeling and support-

ing social environments, agents is here recognized as a suitable solution for

Knowledge Management especially by providing a suitable metaphor used

for modeling KM domains (i.e. representing humans and organizations) and

systems. Applying agents as metaphors on KM is mainly motivated by the

definition of agents as cognitive beings having characteristics that resemble

human cognition, such as autonomy, reactivity, goals, beliefs, desires, and

social-ability. Using agents as human abstractions is motivated by the fact

that, for specific problems, such as software engineering and knowledge man-

agement process modeling, agents may aid the analyst to abstract away from

some of the problems related to human complexity, and focus on the impor-

tant issues that impact the specific goals, beliefs and tasks of agents of the

domain. This often leads to a clear understanding of the current situation,

which is essential for the proposal of an appropriate solution. The current

situation may be understood by modeling at the same time the overall goals

of the organization, and the needs and wants of knowledge holders.

Towards facilitating the analysis of KM scenarios and the development of

adequate solutions, this work proposes ARKnowD (Agent-oriented Recipe

for Knowledge Management Systems Development). Systems here have a

broad definition, comprehending both technology-based systems (e.g. in-

formation system, groupware, repositories) and/or human systems, i.e. hu-

man processes supporting KM using non-computational artifacts (e.g. brain-

x

stormings, creativity workshops). The basic philosophical assumptions be-

hind ARKnowD are: a) the interactions between human and system should

be understood according to the constructivist principle of self-construction,

claiming that humans and communities are self-organizing entities that con-

stantly construct their identities and evolve throughout endless interaction

cycles. As a result of such interactions, humans shape systems and, at the

same time, systems constrain the ways humans act and change; b) KM

enabling systems should be built in a bottom-up approach, aiming at the

organizational goals, but understanding that in order to fulfill these goals,

some personal needs and wants of the knowledge holders (i.e. the organi-

zational members) need to be targeted; and c) there is no “silver bullet”

when pursuing a KM tailoring methodology and the best approach is com-

bining existing agent-oriented approaches according to the given domain or

situation.

This work shows how the principles above may be achieved by the inte-

gration of two existing work on agent-oriented software engineering, which

are combined to guide KM analysts and system developers when conceiv-

ing KM solutions. Innovation in our work is achieved by supporting top-

down/bottom-up approaches to KM as mentioned above. The proposed

methodology does that by strongly emphasizing the earlier phases of soft-

ware development, the so-called requirement analysis activity. In this way,

we consider all stakeholders (organizations and humans) as agents in our

analysis model, and start by understanding their relations before actually

thinking of developing a system. Perhaps the problem may be more effec-

tively solved by proposing changes in the business processes, rather than

by making use of new technology. And besides, in addition to humans and

organizations, existing systems are also included in the model from start,

helping the analyst and designer to understand which functionalities are

delegated to these so-called artificial agents. In addition to that, benefits as

a result of the application of ARKnowD may be also attributed to our choice

of using the proper agent cognitive characteristics in the different phases of

the development cycle.

With the main purpose of exemplifying the use of the proposed method-

xi

ology, this work presents a socially-aware recommender agent named KARe

(Knowledgeable Agent for Recommendations). Recommender Systems

may be defined by those that support users in selecting items of their need

from a big set of items, helping users to overcome the overwhelming feeling

when facing a vast information source, such as the web, an organizational

repository or the like. Besides serving as a case for our methodology, this

work also aims at exploring the suitability of the KARe system to support

KM processes. Our choice for supporting knowledge sharing through ques-

tioning and answering processes is again supported by Constructivism pro-

ponents, who understand that social interaction is vital for active knowledge

building. This assumption is also defended by some KM theories, claiming

that knowledge is created through cycles of transformation between two

types of knowledge: tacit and explicit knowledge. Up to now, research on

KM has paid much attention to the formalization and exchange of explicit

knowledge, in the form of documents or other physical artifacts, often an-

notated with metadata, and classified by taxonomies or ontologies. Inves-

tigations surrounding tacit knowledge have been so far scarce, perhaps by

the complexity of the tasks of capturing and integrating such kind of knowl-

edge, defined as knowledge about personal experience and values, usually

confined on people’s mind. Taking a flexible approach on supporting this

kind of knowledge conversion, KARe relies on the potential of social interac-

tion underlying organizational practices to support knowledge creation and

sharing.

The global objective of this work is to support knowledge creation and

sharing within an organization, according to its own natural processes and

social behaviors. In other words, this work is based on the assumption

that KM is better supported if knowledge is looked at from a constructivist

perspective. To sum up, this thesis aims at:

1) Providing an agent-oriented approach to guide the creation and evolve-

ment of KM initiatives, by analyzing the organizational potentials,

behaviors and processes concerning knowledge sharing;

2) Developing the KARe recommender system, based on a semantically

xii

enriched Information Retrieval technique for recommending knowledge

artifacts, supporting users to ask and answer to each others’ questions.

These objectives are achieved as follows:

- Defining the principles that characterize a Constructivist KM support-

ing environment and understanding how they may be used to support

the creation of more effective KM solutions;

- Providing an agent-oriented approach to develop KM systems. This

approach is based on the integration of two different agent-oriented

software engineering works, profiting from their strengths in providing

a comprehensive methodology that targets both analysis and design

activities;

- Proposing and designing a socially aware agent-oriented recommender

system both to exemplify the application of the proposed approach and

to explore its potential on supporting knowledge creation and sharing.

- Implementing an Information Retrieval algorithm to support the pre-

viously mentioned system in generating recommendations. Besides de-

scribing the algorithm, this thesis brings experimental results to prove

its effectiveness.

Acknowledgements

Culture is said to play an essential part in either motivating or inhibiting

Knowledge Management (KM) practices, meaning that the particular norms

and behaviors underlying the organizational environment have a direct im-

pact on how people create and share knowledge. The culture theme has been

part of my main interests for a long time, since my teenage years, when I

worked as a volunteer for the AFS Intercultural Programs. And it was also

the will to get to know and experience a different cultural background that

drove me to take this PhD in the Netherlands. This also explains my deep

satisfaction in realizing that this thesis is the result of my interaction with

an absolutely multi-cultural group of researchers composed of Brazilians,

Greeks, Germans, Italians, Portuguese, Americans, Dutch and Bulgarians.

I feel fortunate and privileged to have worked with such bold, brilliant and

kind people, and I can do no other than expressing my gratitude to them

all.

I start by thanking my promoter Dimitri Konstantas, who believed in

me since the earliest stages of my PhD, playing an important part on the

definition of the scope of my work, and providing me with interesting in-

sights about what a PhD thesis is all about. I also thank Lora Aroyo for

supervising me for three quarters of my PhD. I particularly acknowledge

her participation in helping me refine my initial ideas, making them more

precise . Additionally, I would like to show my gratitude to all my colleagues

of the Architecture and Services of Network Applications (ASNA) group for

their friendship and support. I especially thank Val Jones for helping me

find this PhD position. I also express my most sincere appreciation to Aart

xiii

xiv

van Halteren and Marten van Sinderen, who supported me in the last year of

my work, particularly guiding me in the complex task of writing this book.

And finally, I am immensely grateful to Annelies Klos, who assisted me in

a variety of tasks throughout these past four years, making my work easier

and more enjoyable.

I feel greatly honored to have Prof. Anton Nijholt, Prof. Betty Collis,

Prof. Gerd Wagner, Prof. John Mylopoulos, and Dr. Lora Aroyo in my

defense committee. I am thankful to them for their dedication in reading

my thesis and participating in my defense.

The starting point of my PhD was the work on the Agent Academy Eu-

ropean Project that was for me a great laboratory in which I was able to

experiment ideas and learn. I thank all the members of the project, and espe-

cially Adamantios Koumpis for his incentives and good humor, and Dionisis

Kechagias, Robert Magnus, and Felix Schmid, for the great peer work.

Three outstanding researchers from outside the University of Twente

helped me to shape and evolve the contents of this thesis: Gerd Wagner,

Anna Perini and Virginia Dignum. Gerd was the one to suggest that I fo-

cused on the application of Agents to KM, which then led me to meet both

Anna and Virginia. I thank him not only for that, but also for being so

available in a crucial moment of my PhD, and for triggering a number of

relevant discussions without which this work would not have been possible.

Anna and Virginia have been more than collaborators, my true friends and

partners, supporting me throughout most of my PhD research. I greatly

admire their dedication and effort on doing high quality research, and I feel

fortunate to have shared lots of pleasant moments with them.

I thank Anna Perini, Gianluca Mameli and Paolo Traverso for giving me

the opportunity to visit the Automated Reasoning Systems (SRA) division

at the Technological and Scientific Research Institute (IRST), in Trento,

Italy, for four months in the Spring/Summer 2003. The rich and collabo-

rative environment I found there was central for making tangible the main

topics targeted in my work. In this regard, I am very grateful to Diego

Sona, Amy Soller, Alessandra Molani, Matteo Bonifacio and Roberto Tiella

xv

for their teamwork and great insights. I would also like to show my appre-

ciation to Paolo Giorgini and John Mylopoulos, who gave me the chance to

come back to Trento in April 2005 to finish writing my thesis, meanwhile

participating in the Tropos Project. Furthermore, I thank Nicola Fazzi, An-

gelo Susi, the participants of the Tropos PhD lunch meetings, and my friends

at the Laboratory of Applied Ontology (LOA) for their contribution in the

final stages of my work.

For the work on the KARE system, I am immensely indebted to Diego

Sona and Pablo Gomes Ludermir. I am grateful for the unpretentious way

Diego shared with me his valuable experience on machine learning and infor-

mation retrieval. Thanks for the encouragement and the expert assistance.

Pablo appeared in a decisive moment of my research, and his enthusiasm

and diligence were vital to accomplish the system implementation and ex-

perimentation. Very special thanks to him!

I would also like to thank Crediné Silva de Menezes (my eternal tu-

tor), José Gonçalves Pereira Filho, Sandra Bortolon, Davidson Cury, Rosane

Caruso and Ricardo Falbo. They are friends from my former University in

Brazil and have provided me with great guidance and incentives in a special

difficult moment of my work.

I have no words to thank all my family and friends, for contributing in

so diverse and peculiar ways for this accomplishment. Some of these friends

have greatly contributed to our smooth adjustment to the Netherlands, in-

cluding Alex Slingerland, Marike Hasperhoven, Maarten Wegdam, Susan

ten Buuren, Helen Kool, Gloria Tuquerres, David Bueno, Clever and Kelen

Farias, Ciro Barbosa, Marcos Salvador, Remco and Martina Dijkman, Lia

and Robin van Steijn, Valeria Carazzai, Sávio Castro, José Laurindo dos San-

tos, Valerie Gay, Nikolay Diakov, Galina, and Christian Tsolov. Some others

came later into my life, making it even more enjoyable, like Katarzyna Wac,

Roberta Cuel, Jaqueline Nicolau, Ricardo Neisse, Tiago Fioreze, Stanislav

and Vania Pokraev. And finally, some compose our Brazilian (or almost!)

family abroad: Junior, Denise, Let́ıcia and Clara Brandão, Leonardo Dar-

dengo, Gustavo Moraes, Fabiano Gonçalves, Luiz Olavo e Luciana Bonino,

Mariana Costa, Anton and Thomas Bovens, Peter de Jong, Maura Merson,

xvi

João Paulo Almeida, Patricia Dockhorn, Pablo Ludermir, Flavia Machado,

Diana Ros, Diego Ŕıos and Sonia Taborcia. Special thanks to Diego and

Sonia for the great work on the design of this thesis cover. Furthermore, I

would like to thank all my friends from the Dutch Spiritist Council for their

ever being so welcoming and kind, with special mention to Maria Moraes,

Dalva Marçal, and Elias and Virǵınia Nascimento. I appreciate the work we

have done together. And finally, I thank all the friends and relatives who are

in Brazil, especially those who came to visit us in our home abroad. Your

presence (real or virtual) has made our experience much more pleasant and

rewarding.

The love and admiration I feel for my direct family is indescribable. Hav-

ing Eloi Corveto de Souza and Dalva Silva Souza as my parents is a great

blessing. All they taught me about life has been mostly fundamental to fa-

cilitate the journey I undertook during these past four years. And I cannot

imagine my life without my three younger brothers: Luiz Gustavo, Vı́tor

Estêvão and Marcelo Henrique Silva Souza. I thank them for all the light

and joy they bring into my life, and for all I learn from them everyday. I am

also very grateful to my grandmas Lydia Mendes Silva (in memorian) and

Penha Corvetto de Souza, for their affection and unconditional support.

At last, I must thank the one person without whom none of this would

have happened. My husband Giancarlo Guizzardi is my everlasting source

of strength, inspiration and happiness. I thank him for being my perfect

partner in all life adventures! In fact, I am truly positive this one was just

the beginning.

List of Figures

1.1 Research approach . 16

2.1 The relationship between data, information and knowledge . 23

2.2 The Knowledge Spiral (Nonaka and Takeuchi, 1995) 38

2.3 Cognitive balancing process 45

2.4 Illustration of Vygotskys theory 46

2.5 Knowledge internalization and externalization cycles moti-

vated by the construction of a sharable and concrete artifact 47

2.6 An agent interacting with the environment (Wooldridge, 1999) 51

2.7 The Gaia models (Wooldridge et al., 2000) 54

2.8 The ROADMAP models (Juan et al., 2002) 56

2.9 The core elements of AOR external models 67

2.10 The building blocks for Constructivist Knowledge Management 76

3.1 Combining different agent-oriented approaches 85

3.2 Three application scenarios for ARKnowD 88

3.3 ARKnowD’s lifecycle . 94

3.4 Different kinds of individuals in UFO-A 101

3.5 UFO-A differentiating between Kind and Role 103

3.6 UFO-B: understanding perdurants in details 105

3.7 Extending UFO-C from the UFO-A concept of physical object

and the UFO-B concept of event 106

3.8 Extending UFO-C from the UFO-A concept of moment indi-

vidual . 108

xvii

xviii LIST OF FIGURES

3.9 Pointing out the difference between physical agent type and

physical agent role . 110

3.10 Distinguishing between dependency, delegation and acquisi-

tion relations . 111

3.11 (A) an excerpt of the Tropos’s metamodel showing the con-

cept of actor and its specializations and (B) corresponding

notations . 117

3.12 Correcting two cases of incompleteness 118

3.13 Differentiating the three types of dependencies, goal and plan

delegation, and resource acquisition 120

3.14 Distinguishing beliefs from non-agentive objects in AORML

using stereotypes . 120

3.15 MDA metamodel transformation (MDA Guide Version 1.0.1) 123

3.16 Tropos actor diagram depicting main agents and dependencies

from the paper review scenario 129

3.17 AOR agent diagram automaticaly generated from previous

Tropos actor diagram . 130

3.18 Final agent diagram . 131

3.19 Tropos goal diagram specifying the point of view of the PC

Chair agent . 134

3.20 AOR Interaction Sequence Diagram 138

3.21 AOR Interaction Pattern Diagram 142

3.22 AOR Interaction Frame Diagram 144

3.23 Transformation engine . 146

3.24 Actor diagram designed in TAOM4E 148

3.25 Transformation output file 148

4.1 Initial domain model of the scenario 160

4.2 Main goal delegations between the agents of the scenario . . 160

4.3 Creating a sustainable relationship between KM Division and

CoP . 162

4.4 Newcomer’s integration into work on (A) the organization

manager’s perspective and on (B) the newcomer’s point of view164

LIST OF FIGURES xix

4.5 Newcomer’s perspective when joining a CoP 167

4.6 The internal structure of the CoP 169

4.7 Goal delegations from the CoP to the KARe System 171

4.8 Performance evaluation affecting participation in CoPs . . . 172

4.9 Peer-to-peer knowledge sharing 176

5.1 Process of (A) acquiring knowledge, (B) using it for solving a

specific problem and (C) socializing it with others 187

5.2 A human peer responds to a question when no answer is found

by the system . 188

5.3 The system retrieves an answer previously stored by another

peer . 189

5.4 Tropos diagram showing the high level architecture of the

KARe system . 192

5.5 The distribution of agents within the nodes of KARe’s peer-

to-peer network . 194

5.6 Tropos diagram showing KARe’s high level architecture in

more details . 195

5.7 Draft Agent Diagram . 196

5.8 Conceptual Agent Diagram 197

5.9 Design Agent Diagram . 199

5.10 The Peer creates a personal taxonomy 201

5.11 The Peer includes a new document in his personal knowledge

base . 203

5.12 The Peer configures his personal information 204

5.13 Mike submits a question to his associated PA 206

5.14 Mike’s PA searches for a Peer to directly respond to Mike’s

doubt . 208

5.15 A Peer responds to Mike’s question 210

5.16 The question and answer are stored in Mike’s knowledge repos-

itory . 211

5.17 Joey’s question finds a quick answer 214

xx LIST OF FIGURES

5.18 The AM’s internal behavior when the answer to a question is

requested by the PA . 215

5.19 The PA periodically asks other PAs for new artifacts of inter-

ests for its peer . 216

5.20 The PA looks for the answer for a pending question on behalf

of its peer . 218

5.21 The PA searches for similar users on behalf of its associated

peer . 219

5.22 SCALE toolbox . 221

5.23 SCALE integration model 223

5.24 A layered view of KARe . 224

5.25 Exerpts of a real estate A) taxonomy and B) ontology 227

6.1 Our view on the information retrieval systems’ general archi-

tecture . 239

6.2 Illustrating the inverted documents index 242

6.3 The cosine function is used to compute the similarity between

a query Q and a document dj 246

6.4 Taxonomies of Mike and Joey contextualizing documents and

questions . 250

6.5 A short vocabulary index and a vector representing a given

concept C in the user taxonomy 251

6.6 The evaluation experiment 256

6.7 Comparison of recall measure taking the standard approach

and our proposed approach using (A) 1 concept, (B) 2 con-

cepts and (C) 3 concepts . 257

6.8 Refined AOR Agent Diagram 260

6.9 KARe’s communication ontology 262

6.10 AOR Interaction Frame Diagram explicitating interface be-

tween PA and AM . 263

6.11 UML Sequence Diagram modeling the indexing process . . . 265

6.12 UML Sequence Diagram modeling the searching process . . . 266

6.13 A screenshot of the desktop prototype 268

LIST OF FIGURES xxi

6.14 Two components composing the desktop prototype 269

6.15 Extra component for the development of the handheld prototype271

6.16 Distribution of the fixed and handheld components 271

6.17 Screenshots of the handheld prototype 273

xxii LIST OF FIGURES

List of Tables

1.1 Thesis Research Questions 13

2.1 Groupware taxonomy based on time and space 30

2.2 Comparing methodologies 73

3.1 ARKnowD’s viewpoints . 125

3.2 Mapping Tropos into AORML 127

3.3 Textual description of the rule R1 representing the PC Chair’s

reactive behavior . 143

4.1 The requirements elicited for the KARe system 175

4.2 Summary of Tropos’s constructs and analysis techniques il-

lustrated in this chapter . 179

5.1 Relevant user characteristics when searching for knowledge . 184

5.2 Textual description of the rule R1 of the AM 215

5.3 Classifying KM systems classified according to the layered

model . 233

6.1 Some statistics regarding the experiment taxonomies 254

6.2 Experiment results . 256

7.1 Relation between KARe’s requirements and the Construc-

tivist KM building blocks 290

xxiii

xxiv LIST OF TABLES

Contents

Preface vii

Acknowledgements xiii

List of Figures xvii

List of Tables xxiii

1 Introduction 1

1.1 Motivation . 1

1.1.1 Challenges of the Information Society 3

1.1.2 Towards a Human-centric Knowledge Management Per-

spective . 5

1.2 Background . 6

1.2.1 Constructivism and Knowledge Management 6

1.2.2 Agent-oriented Knowledge Management 9

1.3 Thesis Scope and Objectives 12

1.3.1 Research Questions 12

1.3.2 Objectives . 13

1.4 Research Approach . 15

1.5 Thesis Structure . 17

2 Theoretical Framework 19

2.1 Introduction . 20

2.2 Knowledge Management . 22

2.2.1 Definitions . 22

xxv

xxvi CONTENTS

2.2.2 Knowledge Management Systems 26

2.2.3 Main Challenges . 34

2.2.4 Theoretical Background 36

2.3 Constructivism . 43

2.3.1 Jean Piaget: Genetic Epistemology 44

2.3.2 Lev Vygotsky: Social-historic Constructivism 46

2.3.3 Seymour Papert: Constructionism 46

2.3.4 Paulo Freire: Dialogue enables Learning 47

2.4 The Agent-oriented Paradigm 48

2.4.1 Agents’ Definitions and Attributes 50

2.4.2 Agent-oriented Software Engineering

Methodologies and Languages 53

2.5 Building Blocks for Constructivist

Knowledge Management . 71

2.6 Towards Agent-oriented Constructivist

Knowledge Management . 77

3 The ARknowD Methodology 81

3.1 Introduction . 82

3.2 Scenarios of Applicability . 87

3.3 Activities and Lifecycle . 90

3.4 The Use of Agent Mentalistic Concepts 96

3.5 Towards an Ontology for the Domain of

Agents . 100

3.5.1 UFO-A: Endurants and Perdurants 100

3.5.2 UFO-B: an Ontology of Perdurants 104

3.5.3 Extending UFO-C 105

3.6 Evaluating ARKnowD’s Notation 114

3.6.1 Evaluation Method 114

3.6.2 Evaluation . 116

3.7 MDA-inspired Transformation Method 121

3.7.1 The Model Driven Architecture Viewpoints 121

3.7.2 ARKnowD’s Viewpoints and Models 123

CONTENTS xxvii

3.7.3 ARKnowD’s Transformations: Converting Tropos into

AORML . 126

3.8 Working Example and Methodological

Guidelines . 128

3.9 Automated Support . 143

3.10 Related Work . 149

3.11 Conclusion . 151

4 Domain and System Analysis 155

4.1 Introduction . 156

4.2 Knowledge Management in CoPs:

a Fictitious Scenario . 157

4.3 The Domain Stakeholders 159

4.4 Focusing on the Perspective of the

Newcomer . 163

4.5 Joining a Community of Practice 167

4.6 Adding New Agents: Detailing the CoP

Structure . 168

4.7 Identifying the Needs for the KARe System Agent 170

4.8 Adjusting the Evaluation Method 172

4.9 The Conducted Analysis in Light of

Constructivist KM . 173

4.10 Focusing Closer on the KARe System

Requirements . 175

4.11 Conclusions . 178

5 The KARe System 181

5.1 Introduction . 182

5.1.1 User Modeling in KARe 183

5.1.2 Using KARe to Ask and Answer Questions 186

5.1.3 Proactive Knowledge Delivery 190

5.2 Architectural Design . 191

5.3 Detailed Design . 196

5.3.1 Behavior and Interaction Modeling 199

xxviii CONTENTS

5.4 Integration with Other Systems 220

5.5 Related Work . 223

5.5.1 Materializing the Semantic Model 225

5.5.2 Supporting the Adaptation and Presentation

Layers . 229

5.5.3 Using the Layered Model to Classify KM Systems . . 231

5.6 Conclusions . 232

6 Recommendation Algorithm and Implementations 235

6.1 Introduction . 236

6.2 Information Retrieval . 238

6.2.1 Text Pre-processing 240

6.2.2 Indexing . 241

6.2.3 Searching . 242

6.2.4 Modeling . 244

6.2.5 Evaluation . 247

6.3 Recommendation Algorithm 248

6.3.1 Description . 249

6.3.2 Evaluation . 254

6.4 Concluding KARe’s Detailed Design 259

6.4.1 Agent Communication Ontology 261

6.4.2 Interaction Modeling 262

6.5 Prototypes . 267

6.5.1 Desktop Prototype 268

6.5.2 Handheld Prototype 270

6.6 Related Work . 274

6.7 Conclusions and Future Work 275

7 Conclusion 279

7.1 Results Overview . 279

7.2 Research Questions Revisited 282

7.2.1 Applying Agents to Support Constructivist

Knowledge Management 283

CONTENTS xxix

7.2.2 Developing a Methodology to Support Knowledge Man-

agement . 284

7.2.3 Using KARe to Support Constructivist KM 289

7.3 Future Work . 295

7.3.1 Moving Forward with the Work on ARKnowD 295

7.3.2 Future Developments on KARe 296

Bibliography 301

xxx CONTENTS

Chapter 1

Introduction

“Perplexity is the beginning of knowledge.”

Kahlil Gibran

This chapter discusses the motivations behind this work, also presenting

some background information. With this, it brings our work in line with the

developments in Knowledge Management and provides the first flavor of our

own views regarding this field. The chapter also describes the objectives of

the thesis and the approach used to achieve these objectives.

This chapter is organized as follows: section 1.1 presents the main motiva-

tions behind this work; section 1.2 focuses on some background information,

thus giving the context in which this thesis has been developed; section 1.3

describes the research questions that guided our research and clearly sets

up the objectives of this work; section 1.4 discusses the research approach

used to achieve the proposed objectives; and finally, section 1.5 presents the

structure of the remaining of this thesis.

1.1 Motivation

An ever changing and competitive market forced people to find new ways

to improve their performance. They must maintain themselves up to date,

seeking for new knowledge and improving their competences and skills. Con-

currently, these changes had similar impacts within organizational settings.

1

2 Introduction

Mainly aiming at staying in business or seeking for higher profits, organiza-

tions need support for fostering innovation and boosting production. Knowl-

edge Management (KM) is appointed as a solution for both organizations

and individuals to achieve excellence in performance (Alavi and Leidner,

1999) (Nonaka and Takeuchi, 1995) (Wiig, 1994).

KM may be broadly defined as tools, techniques and processes for the

most effective and efficient management of intellectual assets (e.g. products

and process documentation, historical records, and information related to or-

ganizational member’s personal experience and intuition). In other words,

KM deals with providing the right information to the right people, at the

right time (Fischer and Ostwald, 2001). This task is at the same time sup-

ported and challenged by the technological advances brought by the new era

of the information society. On one hand, these advances have granted people

with more ready access to information. But as a side effect, people must

cope with great amounts of information that is constantly being broadcasted

over the Internet and through organizational Intranets. In this context, one

might ask the following questions: how can one separate valuable from use-

less information? Assuming that a lot of what is broadcasted may be of use,

how to process so much information? How to determine if an information

source is trustworthy or not? These are common problems faced both by

individuals and by organizations. In addition to that, organizations also face

other difficulties, such as: a) guaranteeing an effective knowledge flow among

its employees, in order to foster innovation and new knowledge creation; and

b) making sure that, in case one employee leaves, his/her knowledge is kept.

This thesis tries to prove that Computer Science can play an important role

in providing methodologies and information systems, offering a solution to

many of these problems.

Although being currently popular to provide assistance to the problems

mentioned above, KM systems have often failed to meet their goals, espe-

cially due to a general lack of acceptance by the system’s users (Pumareja

et al., 2003) (Orlikowski, 1992a). This work identifies some of the problems

leading to this lack of acceptance, and presents innovative ways to solve

them, proposing a methodology to guide the development of KM systems,

Motivation 3

and developing a recommender system that meets the philosophical assump-

tions we consider essential for enabling effective KM both personally, and

within modern organizations.

1.1.1 Challenges of the Information Society

Applewhite (2004) in his report entitled “The view from the top” provides

a quick assessment of the importance of the Internet in modern society.

The report presents the result of a survey made with 40 technology experts

(among business top executive, academic institution’s managers, researchers,

and others) regarding technological advances of the past, present and fu-

ture. When questioned about the most important technology of the last

40 years, 9 interviewees directly mentioned the Internet, and 4 others made

indirect reference to it, providing answers such as “information technology”

and “global communication networks”. Moreover, these experts predict that

in the near future, society will feel even more impact coming from telecom-

munication and information technology, since these are considered by 16 of

the interviewees as the most important technologies for the coming decade.

Examining closer the way information technology has changed people’s

life in the past few years makes it difficult to ignore the ‘gains vs. losses’

dichotomy that has emerged from the latest advances. On one hand, infor-

mation technology has presented people with new and more efficient ways

to address important problems in their daily lives. But on the other hand,

it has also brought about some serious challenges. Most of these challenges

have to do with coping with an incredible amount of information that one is

expected to process in one’s work and life in general. For example, one may

say that electronic mail technology changed the way people communicate for

the best. Email is often considered as a very effective way to communicate,

since it is fast (i.e. messages arrive at their destination very soon after being

sent), asynchronous (i.e. the contacted person does not need to be there

at the time the message comes, as in the case with phone calls) and rela-

tively reliable (i.e. messages rarely get lost, and quick replies are generally

issued if there is a problem with the receiver’s address). However, email has

4 Introduction

also caused some time and effort overhead on people’s routine, since one is

expected to read one’s email box at least once everyday, and replies are gen-

erally expected to be sent soon (at most one or two days after the message

arrived). If one of the above does not happen, the message receiver possibly

becomes socially known as inconsiderate, lazy and/or unreliable. So the big

question is: has the emergence of email resulted in a solution or in a new

problem? As in general, it has most probably resulted in a little bit of both.

In human history, while trying to solve a problem, human kind has often

created others as collateral effects. This is the case with industrialization

leading to deforestation and pollution, long use of antibiotics for an acute

skin infection causing stomach pain, and why not, with technology making

peoples’ lives more comfortable in one side and more complex on the other. It

seems that this is inevitable simply because humans are not able to predict all

problems a solution might bring, and usually learn more by making mistakes

than by doing the right thing at the first try. This general case certainly

applies to organizational KM, since promising practices and technologies

often lead to unforeseen issues, frustrating both direct users and managers

of the organization, who usually head such initiatives.

If all collateral effects created with the adoption of a new practice or

technology may not be completely eradicated, some of them may be at least

predicted. Consequently, such effects may be compensated or even avoided,

while benefits resulting from the adoption of specific solutions may be re-

inforced and sought. For that, KM practitioners must be empowered with

an engineering methodology capable of first, analyzing the organizational

setting in need of support and then, designing the desired solution in terms

of the adoption of new information systems, or changes in organizational

structures and processes. We claim that providing effective KM solutions

depends on paying more attention to the actual users of KM system (or

participants of KM practices). In this way, we defend a human-centric view

of KM instead of a techno-centric one, having in mind that knowledge is

primarily the product of human minds, and knowledge owners should thus

be the focus of KM enabling processes and information systems.

Motivation 5

1.1.2 Towards a Human-centric Knowledge Manage-

ment Perspective

Business giants such as IBM (Gongla and Rizzuto, 2001) (Garvin, 1993),

Xerox (Brown, 1991), SIEMENS and Hewlett Packard (Kankanhalli et al.,

2003) are included among the biggest investors in KM. All these organiza-

tions share a single objective: enhancing the performance of their workers,

while also profiting from their personal knowledge to make organizational

processes more efficient. Although aiming at the same targets, these organi-

zations often follow different strategies to attain them. Hansen et al. (1999)

classify KM projects into the following two categories:

1. Codification approach: based on systematically storing worker’s knowl-

edge in repositories and databases, hoping that such knowledge may

be reused in the future.

2. Personalization strategy : founded on supporting knowledge holders

on their natural processes of knowledge exchange, motivating direct

person-to-person contacts, and facilitating worker’s communication.

Hansen et al. (1999) also point out that while the codification approach

is geared towards reuse of old knowledge, the personalization strategy is

more prone to result in knowledge creation and innovation. The view de-

fended in this thesis is closer to the position maintained by the adopters of

personalization strategies. We are particularly interested in initiatives that

provide workers with high degree of autonomy on knowledge sharing and on

their active participation in generating new knowledge. The current work-

ing processes supported at companies such as 3M Co. may be given as an

example of a success story in this regard. In 3M Co., workers are given the

chance to spend 15 to 20 percent of their working hours for personal projects

(Karlin, 2004), i.e. new ideas that they have developed by themselves but

which can become new company products. This policy has been adopted

because the managers of 3M Co. have realized that giving their employees

autonomy to explore their passions and exchange knowledge as they wish

fosters creativity, thus leading to innovation.

6 Introduction

Some research initiatives have realized that often, the knowledge gener-

ated in one particular occasion is difficultly transferable to a different context

or situation in the future (Bonifacio and Bouquet, 2002). This claim sup-

ports the development of practices and information systems used to support

the daily processes of knowledge sharing, instead of simply capturing and

codifying knowledge. Groupware, recommender systems, decision support

system, content management systems and knowledge portals are examples

of system that may be adopted for such purposes. However, we emphasize

that the system needs to fit within real activities of the knowledge workers,

being adjusted according to the organization’s environment

1.2 Background

The results of this work have been accomplished with basis on previous

developments in several research topics under the realm of organizational,

educational and computer science. Naming the thesis Agent-Oriented Con-

structivist Knowledge Management suggests that agent-orientation and con-

structivism are two cornerstones of this work. The subsequent subsections

provide a brief discussion on these two topics, thus providing the main con-

text of this thesis.

1.2.1 Constructivism and Knowledge Management

Organizational KM is mainly about learning, but not formally, by the means

of a course. Rather, it is about some kind of unintentional learning, meaning

that it is a natural consequence of people’s daily activities and collaboration

with peers within organizations. According to Lave et al. (1991), this kind of

learning process can be defined as situated learning or legitimate peripheral

participation, which they explain as follows:

“The individual learner is not gaining a discrete body of abstract knowl-

edge which he will then transport and reapply in later contexts. Instead,

he acquires the skill to perform by actually engaging in the process, under

the attenuated conditions of legitimate peripheral participation. This central

Background 7

concept denotes the particular mode of engagement of a learner who partic-

ipates in the actual practice of an expert, but only to a limited degree and

with limited responsibility for the ultimate product as a whole.”

In other words, organizations can be seen as knowledge sharing commu-

nities in which people collaborate and exchange knowledge to perform their

work activities, consequently learning from each other. By interacting and

collaborating, people get involved in a rich interchange of experiences that

gradually reduces the doubts each participant might have regarding organi-

zational processes and products, continuously broadening workers’ mental

models as they ‘learn by doing’.

In educational science, different theories have been created with the aim

of supporting active and collaborative learning. The most prominent ones

are based on the philosophical principles of Constructivism, which can be

summarized as follows (Mahoney, 2004):

• Active agency : learning involves active participation in the process

instead of passive behavior. In other words, individuals do not learn

by being instructed but by engaging themselves in an active dialogue

with the learning content, with instructors and with peers.

• Finding Order or Structure: many human activities are devoted to

finding some kind of order or structure for things and processes, i.e.

people engage themselves in patterning of experiences by the means of

tacit, emotional meaning-making processes.

• Self construction: persons live and grow in a living web of relationships,

and they are endlessly constructing and reconstructing their personal

identity, when interacting with others.

• Social-symbolic relatedness : humans cannot be understood apart from

their organic embeddedness in social and symbolic systems, and such

situatedness affect the way their cognitive models develop and evolve.

• Lifespan development : in human life, order and disorder co-exist in

lifelong quests for a dynamic balance that is never quite achieved.

8 Introduction

Piaget (Piaget and Inhelder, 1969), Vygotsky (1978), Freire (1970) and

Papert (1993) are important precursors of Constructivism. According to Pi-

aget, people learn by balancing what they already know and what is novel for

them. He has noted the fact that humans are in constantly self-organization

(the processes of identity construction and reconstruction mentioned above),

and proposed a theory that explains how knowledge is created (genetic epis-

temology). Studying his work can provide knowledge managers with great

insight on how to foster knowledge creation and growth.

Vygotsky has also made important contributions, creating the socio-

historical constructivism. The most relevant results of his studies to our

work are his discoveries that learning is profoundly shaped by the historical

and socio cultural context in which it is carried out; and his claim that col-

laboration among individuals from different performance levels is essential

for learning. These two postulates show us that: a) the culture involving

the organizational setting has great impact over how people progress in their

working activities; and b) expert employees and newcomers must collaborate

in order to improve their work performances.

Finally, Freire brings a humanistic view into the constructivist research,

proposing that only dialogue can intermediate the solution for conflicts, and

that all voices should be heard, despite people’s position and power. His

work has been broadly recognized in the educational field, and should now

also be acknowledge in the KM area, proposing collaboration (instead of

competition) among all organization’s members as the best attitude to guar-

antee success, both for the organization and to each of its employees.

Building over Piaget’s constructivism, Papert’s construcionism empha-

sizes the importance of sharing knowledge by the means of concrete artifacts.

Papert claims that learning effectively occurs when the learner is engaged

in the construction of a shareable artifact. Building something meaningful

and sharable leads to a cyclic process of externalizing the knowledge that is

in the mind of the learner and internalizing new structures, as a result of

the social interaction around this external artifact. This externalization and

internalization cycle seems to coincide with Nonaka and Takeushi’s Knowl-

edge Management (KM) theory (Nonaka and Takeuchi, 1995). According

Background 9

to them, there are two types of knowledge: explicit and tacit. The former

refers to codifiable components, which can be disembodied and transmitted,

while the latter refers to knowledge that is “confined in people’s mind”, be-

ing difficult to articulate and disseminate. Through social interaction and

collaboration, tacit knowledge is turned into explicit, and individual knowl-

edge is turned into organizational. Organizational knowledge creation is a

result of a continuous and dynamic process of conversion between these two

knowledge types.

As indicated in the previous section, this work supports the creation of

KM projects highly based on autonomy and peer collaboration. In this

thesis, we call Constructivist KM the human-centric view on KM, which

prescribes that constructivist principles should be taken into account when

designing a KM system and/or process. These principles are further defined

and illustrated throughout this thesis.

1.2.2 Agent-oriented Knowledge Management

Agents have frequently been proposed as appropriate entities to enable the

analysis and design of complex systems, made up of several components

that behave autonomously and interact with each other in order to achieve

a common objective (i.e. the system’s overall functionality) (Jennings et al.,

1998) (Wooldridge, 1999) (Wooldridge and Ciancarini, 2001). The social and

cognitive (or mentalistic) characteristics of agents are their main strength,

turning them into promising constructs to emulate human interaction and

rational behavior. The analysis of the current social structures embedded

in the organization may lead to more appropriate system proposals. Then,

the developed systems enable such structures to evolve in terms of efficiency

and performance.

Currently, organizational tasks and processes are often distributed in dif-

ferent divisions and branches of the organization. In addition to that, these

processes follow dynamic kinds of control structure, such as those of market

or collaborative network societies (Dignum, 2004a). Such characteristics re-

quire present organizational structures and processes to be well-understood

10 Introduction

and often redesigned. So, designing KM solutions presents both challenges

of process re-engineering and of information system design, as they must

be shaped to respond to the specific needs of the organizational environ-

ment. In fact, many KM systems are abandoned or fall into disuse because

of inadequate understanding of the organizational context (Dignum and van

Eeden, 2003) (Pumareja et al., 2003). Hence, analysis and design activi-

ties claim for adequate modeling constructs, such as those proposed in the

agent’s paradigm.

Agents in Artificial Intelligence (AI) have been defined as cognitive be-

ings having characteristics such as goals, beliefs, commitments and claims,

being influenced by studies from different research communities, including

economics, sociology, and cognitive science. An agent can be defined as an

autonomic entity inhabiting an environment from which it perceives cer-

tain events (perceptors), and on which it acts causing changes (effectors)

(Wooldridge and Ciancarini, 2001). The behavior of perceiving the environ-

ment and acting as a result of such perception defines agent reactiveness.

But besides reacting, agents are able to adopt goal-driven behavior, deciding

to act on their own (proactively), motivated by their given beliefs about the

world and their desires with respect to how they would like the world to be.

Moreover, agents may “live” in a community of other agents, interacting

with them in several ways, meanwhile pursuing its goals and/or reacting

to events (which here include communicative events triggered by incoming

messages from other agents).

Recently, research in this area has moved its focus from the individual

characteristics of an agent, to the consequences resulting from agents’ inter-

actions. This has given life to a new research area known as Agent Organi-

zations (Sichman et al., 2005). Work in this area has focused, for example,

on: a) the complexness of self-organizing communities (Di Marzo Serugendo

et al., 2004); b) on how the organizational structure may affect the behavior

of human organizations, and how this understanding might help organiza-

tions adapt to changes (Dignum et al., 2004) and c) on modeling organiza-

tions (Dignum, 2004a) (Guizzardi and Perini, 2005).

Concurrent to the evolution in organizational models, more appropriate

Background 11

agent-based abstractions have been developed, allowing the understanding of

the organization’s social, economic and technological dimensions. Advances

in agent societies are often focused on coordination frameworks that enable

agents’ interaction, in such a way that they autonomously but cooperatively

achieve their goals. Some authors classify agent organizations as having

more structure than agent societies, having in common the fact that the

agents in the system work towards a common overall purpose. In this sense,

the main differences between organizations and societies may be given by

the emphasis on the decision processes that underlie organizations, making

more explicit the division of labor among agents (usually through roles)

(Dignum, 2004a) (Ferber et al., 2004) (Hubner et al., 2002) (Esteva et al.,

2002). However, organizations and societies could also be considered as

synonyms, as work on both fields should be targeted at empowering agents

with social structures, providing them with more complex abstractions to

model and support organizations.

The features highlighted above show that agents are adequate constructs

in representing humans in domain models and organizational abstractions.

We can profit from the organizational view, defined by the notions of pur-

pose, structure, rules and norms (Dignum, 2004a) when modeling systems

to be adjusted to organizational processes and practices. Applying agents as

human abstractions allows the system developer to abstract away from some

of the problems related to human complexity, focusing on the important is-

sues that interfere with specific goals, beliefs and commitments of the domain

agents in each modeling activity. This allows the developer to clearly under-

stand the current situation, and this is an essential factor for the proposal

of the appropriate solution. Moreover, such kinds of models make com-

munication with the stakeholders much more effective, since the developer

uses concepts that are more familiar to the common user (e.g. goal, task

and belief) than technology-oriented terminology (like tables, SQL query,

middleware and threads).

Applying agents as a metaphor on system development is not new and

has been observed in (Jennings et al., 1998) (Wooldridge and Ciancarini,

2001). However, especially in KM domains, agent organizations seem to be

12 Introduction

an interesting approach as agents may represent not only artificial beings,

but also the human users and the organizations involved in a given sce-

nario (Guizzardi et al., 2004b) (Dignum, 2004a) (Perini et al., 2004). This

allows, for example, the requirement engineer to understand, before model-

ing a KM system itself, how knowledge flows within the organization. As

a result, besides introducing new technology, the business processes used in

the organization may be changed in order to enhance these knowledge flows.

Moreover, if a technological solution is needed, agents enable legacy systems

to be considered in the analysis, allowing the new solution to be based on

approaches of integration of old and new components. This may lead to

more satisfaction to end users, who are already familiar with the interface

and methods applied in the systems in use.

1.3 Thesis Scope and Objectives

As aforementioned, this thesis considers KM to be more appropriately sup-

ported if knowledge is looked at from a constructivist perspective. In other

words, people (both individually or as organizational members) are the driv-

ing force behind knowledge creation. Hence, when developing KM systems,

personal requirements should be taken into account. On the other hand, the

research community should provide methodologies and systems to mediate

negotiation between people and organizations, considering the general orga-

nizational intentions behind the KM activities to enable the accomplishment

of these goals.

1.3.1 Research Questions

The motivations behind this work led to the elaboration of the research

questions presented in Table 1.1. These research questions are described

in detail in the context of the objectives of this thesis, presented in the

subsequent section.

Thesis Scope and Objectives 13

1.3.2 Objectives

Taking the previously stated research questions, the global objective of this

work may be summarized as:

Developing innovative ways to support knowledge creation and sharing

within an organization, according to its inherent culture and processes,

according to what we call Constructivist KM.

Research Questions

RQ 1: Can agents be suitably used as metaphors to model
human organizations, supporting the creation of Constructivist
KM?

RQ 2: How can a comprehensive methodology be tailored in
order to guide the analysis and design of appropriate KM infor-
mation systems and/or practices?

RQ 2.1: Which of the agent cognitive concepts should be con-
sidered in each development activity?

RQ 2.2: How can agent’s cognitive concepts be materialized in
concrete elements of a system?

RQ 3: What are the requirements for a recommender system
supporting Constructivist KM?

RQ 3.1.: How can social and cognitive aspects involving or-
ganizational members be used in the creation of knowledge
recommendations?

RQ 3.2: Which agent-oriented architecture should be pro-
posed in order to provide users with recommendations in a
non-intrusive way?

RQ 3.3: Which technique must be used in the creation of
recommendations?

Table 1.1: Thesis Research Questions

This main objective is further detailed as follows:

1. Propose an agent-oriented approach named Agent-oriented Recipe for

Knowledge Management Systems Development (ARKnowD) to guide

the creation and evolvement of KM solutions.

14 Introduction

2. Develop a recommender agent named Knowledgeable Agent for Rec-

ommendations (KARe) as a case study of the ARKnowD methodology,

but also aiming at exploring this system’s ability to effectively support

Constructivist KM.

Let us focus on the first objective listed above. To the best of our knowl-

edge, currently there is no engineering methodology specifically tailored for

KM settings, comprehending all development activities. One of the main

contributions in this area, proposed by (Dignum, 2004a) is focused on the

analysis activity but lacks support for the detailed design of KM systems.

Furthermore, our methodology provides greater strength to the initial stages

of requirements analysis. This is motivated by our claim that an effective

solution should be based on a deep understanding of the organizational po-

tentials, behaviors and processes concerning knowledge sharing.

As suggested by research question RQ 1, this work aims at assessing the

appropriateness of the agent-oriented paradigm for the analysis and design

of Constructivist KM practices and enabling technologies. Our appropriate-

ness criteria regards understanding if agents can explicitly capture the enti-

ties, relations and behaviors characterizing human organizations, allowing a

deep analysis of the organizational processes and culture. In particular, such

criteria concerns the determination of what principles characterize a Con-

structivist KM environment, and the investigation of how well the concepts

underlying agents enable modeling and reasoning about such principles.

However, having the right abstraction is not enough for guaranteeing the

development of adequate solutions for the organization. For that, a con-

sistent KM engineering methodology is needed (RQ 2), granting developers

with a set of modeling constructs besides methodological guidelines regard-

ing which modeling activities to perform and which techniques to apply.

In particular, we seek at grasping which cognitive (or mentalistic) notions

characterizing agents should be applied in each development activity, and

how they can be defined (RQ 2.1). Moreover, in order to be implemented in

a system, such concepts must become concrete, giving the developer a clear

sense of how the previous theoretical definitions may be used in practice

Research Approach 15

(RQ 2.2).

Our second objective regards the development of an agent-oriented rec-

ommender system named KARe. This takes us to RQ 3, where we ask which

are the requirements for such a system, specifically aimed at supporting Con-

structivist KM. Related to this question, we are particularly interested in

three distinct focus points. The first one regards grasping the social and cog-

nitive aspects that generally characterize the members of an organization,

and how these aspects can improve recommendations (RQ 3.1). The second

concerns the development of KARe’s agent-oriented architecture (RQ 3.2).

Answering this question requires the definition of which agents compose the

system and how they interact to provide recommendations. Finally, the

third focus point targets the implementation of the recommendation mecha-

nism, which demands the development of an effective technique to assist the

system agents in finding from the information maintained by the community

of users, the one that responds to a particular knowledge request (RQ 3.3).

1.4 Research Approach

Figure 1.1 presents an overview of the research approach undertaken in this

work.

Our first step towards accomplishing the objectives setup in the previous

section regards the definition of the Constructivist KM building blocks. In-

tuitively, we understand that constructivism is in line with the KM view we

aim at supporting. However, beyond intuitions, this work presents a detailed

description of which principles characterize a Constructivist KM supporting

environment. We define such principles based on comparing and contrasting

the theories of the constructivists early mentioned in section 1.2.1 and some

prominent KM theories, coming from the organizational sciences. Here, we

refer to these principles as building blocks as they can be seen as the raw

material for the development of KM systems and practices complying with

Constructivist KM.

Following, we develop the ARKnowD methodology that when applied to

16 Introduction

Constructivist KM

Building Blocks

Application of ARKnowD

Methodology

KARe System

supports

validates

develops

provide context for

ARKnowD Methodology

experiments

verifies

Prototyping &

Assessment Experiment

validates

recommendation

mechanism

Figure 1.1: Research approach

model an organizational environment, is able to verify to which extent this

environment supports the Constructivist building blocks. This is why Fig.

1.1 states that the building blocks provide the context for the application

of ARKnowD’s methodology, i.e. they work as a checklist to be consulted

in the methodology enabled analysis. Included in the development of the

methodology is the understanding of which constructs ARKnowD should

comprehend, which scenarios of use it should target, and what activities

and life cycles it should follow. Particularly, the methodological constructs

reflect the concepts comprehended in an ontology we present for the agent-

oriented domain. This ontology enables us to evaluate, adjust and combine

the notations adopted in ARKnowD.

Aiming at validating the proposed methodology, we apply ARKnowD to

analyze a fictitious scenario specifically tailored to illustrate some of the

main KM challenges. The scenario is built to reflect a realistic problem

domain, according to existing KM literature. Following ARKnowD, the

scenario is analyzed, and changes in the environment are proposed, both

regarding KM practices and the adoption of enabling technology, more par-

Thesis Structure 17

ticularly the KARe recommender system. Still using ARKnowD, we design

KARe, prompting it for implementation. This way, KARe consolidates the

validation of the ARKnowD methodology, showing that it is able to take the

developer from a detailed domain analysis to a consistent design activity.

Besides exemplifying the use of the methodology, the KARe recommender

system is a contribution in itself. KARe is proposed and designed taking the

Constructivist KM building blocks into account, thus providing support to

these earlier identified principles. Finally, a prototype of the system is im-

plemented with the main purpose of assessing its core recommendation algo-

rithm. The prototype comprehends the core functionalities that lead to the

creation of knowledge recommendations. These functionalities are obtained

by developing an Information Retrieval technique to recommend knowledge

artifacts that satisfy incoming knowledge requests. An experiment has been

developed to assess our technique in comparison with a standard approach.

Through this experiment, we are able to assess the effectiveness of our ap-

proach. The remaining features of the system, along with scalability and

usability issues are left as future work.

1.5 Thesis Structure

The findings of this thesis are reported within the six remaining chapters

organized as follows:

• Chapter 2 provides state of the art on existing theories about Knowl-

edge Management, Constructivism and Agents, stating the Construc-

tivist KM building blocks and motivating the need for a KM develop-

ment methodology.

• Chapter 3 introduces the ARKnowD methodology, describing it in

its full extension, including its underlying concepts, scenarios of appli-

cability, activities and life cycle.

• Chapter 4 presents the requirements analysis of the organizational

domain described by the chosen scenario, coming finally to the pro-

18 Introduction

posal of the KARe system to support knowledge sharing in the given

domain.

• Chapter 5 presents the main description of the proposed system, also

focusing on its architecture and design models.

• Chapter 6 describes KARe’s recommendation mechanism, presents

an assessment experiment performed to evaluate such mechanism, and

provides details about two implemented prototypes.

• Chapter 7 concludes this thesis, by presenting a discussion of the

main results of this work and describing our research agenda for the

future.

Chapter 2

Theoretical Framework

“One of the most tragic illnesses of our society

is the bureaucratization of the mind.”

Paulo Freire

The main objective of this chapter is to set the conceptual basis of this

work. Having this in mind, this chapter describes state-of-the-art on Knowl-

edge Management (KM) and on the Agent-oriented paradigm. In addition

to that, it discusses how Constructivism has influenced our views and choices

regarding: a) how to target knowledge management; and b) what kind of

methodological and technological support should be provided to enhance

KM.

This chapter is organized as follows: section 2.1 introduces the chapter;

section 2.2 presents KM background work, including definitions, a discussion

on KM systems, a description of the KM main challenges, and a presentation

of some KM theories from an organizational science point of view; section

2.3 describes some constructivist theories that greatly impacted the views

and choices underlying this work; section 2.4 present the state of the art on

agent technology; and finally, some discussions are presented in sections 2.5

and 2.6, respectively focusing on developing a constructivist view on KM

and on the development of agent-oriented support to Constructivist KM.

19

20 Theoretical Framework

2.1 Introduction

Knowledge is today recognized as one of the most important assets of com-

petitive businesses (Alavi and Leidner, 1999) (Nonaka and Takeuchi, 1995)

(Wiig, 1994). In other words, organizations realized that the quality of their

products and services depend on the effective use of the knowledge that is

created and shared by its members. For this reason, the organization should

be able to establish an environment that favors the creation of knowledge

and innovation. This usually involves the development of a knowledge shar-

ing culture that enables a good flow of knowledge among all members of the

organization.

According to Nonaka and Takeuchi (1995), organizations should be tuned

to knowledge creation that is defined as “a process that organizationally

amplifies the knowledge created by individuals and crystallizes it as a part of

the knowledge network of the organization”. This is especially important in

today’s market when work force is highly dynamic and mobile, to guarantee

that knowledge is kept within organizational boundaries when employees

leave it. Moreover, such processes are aimed at making sure that people in

all organizational points-of-action have the information they need for their

particular activities, despite of being geographically distributed or working

in different organizational units (Wiig, 1994).

Alavi and Leidner (1999) remind us that the concept of capturing and

communicating knowledge in organizations is not in itself a novelty and has

long been accomplished through training, employee development programs,

and access to organizational documentation, such as reports and manuals.

However, KM adds the dimension of potentially using enabling information

technologies (such as the Internet, Intranets, data warehouses, data filters

and software agents) to support the systematic creation, integration, and

dissemination of knowledge. It is also important to note that contrarily

to training, KM aims at conveying knowledge to people in an informal way,

rather than doing it in formal classes or tutorials. That is why KM is said to

lead to unintentional learning (Lave et al., 1991), embedded in organizational

practices, policies and routines.

Introduction 21

The informality of knowledge transmission does not imply, however, that

this happens as a pass of magic. On the contrary, it requires the organization

to actively invest time and resources on creating a conducive environment for

knowledge creation and sharing. Organizational reengineering, the adoption

of specific methods such as “total quality management” and “organizational

learning techniques” can partially deal with separate parts of this challenge

(Wiig, 1994). However, new methodologies specifically tailored to under-

stand the current organizational conditions, subsequently proposing changes

in practices besides technology adoption are also essential for effective KM

to take place.

This work claims that agents have a great potential to support Knowledge

Management (KM), serving as rich metaphors to enable the analysis of or-

ganization’s scenarios, and moreover functioning as building blocks for KM

systems’ development. In fact, the suitability of agents for KM support has

been recognized elsewhere, both in theory (Dignum, 2004b) (van Elst et al.,

2004), and in the development of agent-oriented systems (Abecker et al.,

2003) (Gandon et al., 2002) (Preece et al., 2001). However, this debate is

hardly finished. Our work takes advantage of the mentalistic notions sup-

ported by agents, such as autonomy, reactiveness, proactiveness and social

ability (Wooldridge, 1999). In general, we propose that agents can represent

besides systems, human beings and organizations, allowing the analysis of

their interrelationships, behavior and motivations, before an actual KM solu-

tion can be proposed. In this way, we hope to be able to adjust KM practices

and systems to the organization’s particular requirements, aspect of concern

of many KM researchers (Wiig, 1994) (Davenport and Prusak, 1998). We

argue that it is important to understand where and how agent’s mentalis-

tic notions can be used to help system developers to abstract away from

unimportant matters, while focusing on the right concepts in each develop-

ment activity. Although various agent-oriented methodologies target these

notions in different ways, a deep discussion about their conceptualization

and practical use concerning information systems development is currently

an open issue.

KM practices can take different forms and follow diverse points-of-view.

22 Theoretical Framework

Here, we take Constructivism as a theoretical background to be closely fol-

lowed when proposing a new KM enabling process and/or system. This

comes from the realization that KM is ultimately about learning. And more-

over, that the constructivist paradigm is largely compliant with the kind of

learning KM wants to accomplish: unintentional, situated, and based on

active engagement by the one who learns. Constructivism also alerts that

regardless of position within the organization, all members should be seen as

potential sources of knowledge. In other words, according to this paradigm,

learning and knowledge sharing are more effective when non-hierarchical,

idea that has been previously defended by knowledge managers and theo-

rists in the area (Orlikowski and Gash, 1994). In this chapter, we discuss

how constructivist theories can aid us in shaping KM practices and systems,

allowing us to understand some of their general requirements beforehand.

2.2 Knowledge Management

We start by providing a general overview about the KM field. We focus on

the basic definitions underlying this field (section 2.2.1) , and slowly progress

towards the exploration of some themes related to how it can be supported.

In this realm, we present a discussion about KM systems, with a few ex-

amples (section 2.2.2). Then, we discuss the main challenges on providing

KM solutions (section 2.2.3). And, finally, we present some theories from the

viewpoint of the organization sciences that comply with our vision regarding

KM (section 2.2.4).

2.2.1 Definitions

Before we understand how KM may be facilitated, it is important to have

a clear picture of what knowledge actually is. Fields related to Information

Processing usually define knowledge in contrast to the related definitions of

information and data (Alavi and Leidner, 1999) (Davenport and Prusak,

1998). Data is raw by nature and thus, does not inform one of anything,

except if it is analyzed and interpreted. A sentence like “Beatrixstraat” and

Knowledge Management 23

a number like “121” are examples of data. When data is analyzed and inter-

preted, it becomes information. For instance, knowing that “Beatrixstraat”

refers to a street in the city of Enschede (The Netherlands) and that “121”

refers to a house number, one suddenly has information about an address.

When information is authenticated and contextualized, including indications

of how it should be applied in action, it finally becomes knowledge. Figure

2.1 illustrates the transformation of data into information, and information

into knowledge.

analyze,

interpret

contextualize

Information

Data

Knowledge

Figure 2.1: The relationship between data, information and knowledge

According to (Alavi and Leidner, 1999), such definition is limited, as it

presumes a hierarchy from data to information, and from information to

knowledge, with each varying along some dimension, such as context, use-

fulness, or interpretability. Instead, they argue that “knowledge is informa-

tion possessed in the mind of an individual: it is personalized or subjective

information related to facts, procedures, concepts, interpretations, ideas, ob-

servations and judgments (which may or may not be unique, useful, accurate,

or structurable). (...) information becomes knowledge once it is processed

in the mind of an individual (...). This knowledge then becomes informa-

tion again (...) once it is articulated or communicated to others in the form

of text, computer output, spoken, or written words or other means.” (pg.

6) Consequently, Alavi and Leidner differentiate between information and

knowledge analogously to Nonaka and Takeuchi’s definitions of explicit and

tacit knowledge (Nonaka and Takeuchi, 1995). These two knowledge types

are defined as follows:

24 Theoretical Framework

• tacit knowledge has to do with personal values, intuitions, and experi-

ence, usually embodied in the person’s actions and choices. Thus, this

kind of knowledge is hard to formalize and communicate;

• explicit knowledge, as the name suggests, refers to knowledge that is

codifiable and transmittable to others.

More philosophical views on knowledge define it as “justified true belief”

(Audi, 1998), meaning that knowledge is a belief that can actually be verified

to be true in the objective reality, and for which we can provide a reason (or

justification). This definition is founded on the empiricist view of epistemol-

ogy1, which claims that the only source of knowledge is sensory experience.

Such view is challenged by rationalist traditions that argue that true knowl-

edge can be attained by reasoning, hence not being necessarily justified by

sensory experience. Epistemology studies how knowledge emerges through

its relations with human abilities, such as perception, memory, reflection,

introspection and testimony (Audi, 1998).

Whatever view seems more appealing, rather than debating knowledge

definitions, our main goal here is understanding what it represents to or-

ganizational contexts and how it can improve organizational products and

processes. In this sense, knowledge can be seen at the same time as a basic

ingredient and a product of everyday work within an organization. As an

ingredient, it can be regarded as personal belief and information that

enhances the ability of an individual to make decisions and take effective

action. And as a product, it can be seen as the direct result of organiza-

tional members’ actions, usually embedded in their own practices and/or in

their work outcomes.

Note that, although considered as a concrete organizational asset, knowl-

edge behaves in a very different way when compared to physical and natural

resources. Instead of being bound to finish like natural resources, knowledge

can be replicated and expanded endlessly, enabling wide reuse besides new

1Epistemology is the philosophy of knowledge, focusing on what knowledge is, how it
is created and how it relates to other concepts such as memory, belief, perception and
reasoning (Audi, 1998).

Knowledge Management 25

knowledge creation. Moreover, when an individual possessing it shares it

with others, he or she does not give it away, as in the case of physical re-

sources. Instead, knowledge is retained by both parties: the one who gives

it away, and the one who gets it (Allee, 1999).

Having all this in mind, KM can be defined as a systematic process for ac-

quiring, organizing and communicating both tacit and explicit knowledge to

all members, enabling them to be more effective and productive in their work

(Alavi and Leidner, 1999). This process is based on practices and technolo-

gies that motivate knowledge exchange, so that knowledge can be replicated

and amplified to be used in all points-of-action within the organization.

Fischer and Ostwald (2001) defines KM as a cyclic process composed of

three main activities: creation, integration and dissemination of knowledge.

Knowledge creation, as the name suggests, is the activity that leads organi-

zational members to generate new knowledge; knowledge integration refers

to converting it into a sharable technological format, while also connecting

it to existing knowledge within the organization; and finally, knowledge dis-

semination enables access of specific knowledge to all employees and units

that need to apply it in practice.

According to Nonaka and Takeuchi (1995), teams are a cornerstone of

effective KM, working as a shared context for social interaction, which is

essential to knowledge creation and dissemination. New ideas and points of

view are created through dialogue and discussion. This dialogue can involve

considerable conflict and disagreement, but it is exactly such conflict that

motivates organizational members to question their assumptions, making

sense of their experience in a new way. Consequently, such interactions

often lead to the transformation of personal knowledge into organizational

knowledge. Lave et al. (1991) and Wenger (1998) have also emphasized the

role of teams and communities in the knowledge sharing process. A wider

discussion on this topic is found in section 2.2.4.

26 Theoretical Framework

2.2.2 Knowledge Management Systems

Knowledge Management Systems (KMSs) have evolved in the past 30 years,

coming from systems based on central repositories of knowledge built by

knowledge engineers to distributed systems, which grant the users with full

autonomy over knowledge exchange. Following this evolution, three phases

can be distinguished.

The first phase is characterized by central-based systems. The organiza-

tion managers, supported by knowledge engineers, collected and structured

the contents of an organizational memory as a finished product at design

time (before the organizational memory was deployed) and then dissemi-

nated the product, expecting employees to use it and update it. Such ap-

proaches were top-down in that they assumed that management creates the

knowledge and that workers receive it (Fischer and Ostwald, 2001). The

organization employees often disliked such approaches and deserted the sys-

tems, because:

• workers claimed that the knowledge stored in the repository was de-

tached from their real working practices;

• the work of constantly updating the knowledge base was seen as extra

work and as a burden.

These claims led to the development of evolutionary methods to build

KM systems, starting the second phase of the KMSs evolution. Accord-

ing to these approaches, the basic KM platform was initially developed and

evolved proactively in an on-going fashion (Hahn and Subramani, 2000).

The system users were viewed as stakeholders in the platform development,

participating in the elicitation of requirements that would more closely re-

late to their daily activities. An example of this is the “Seeding, Evolution-

ary Growth, Reseeding (SER)” process model, developed to understand the

balance between centralized and decentralized evolution in sustained devel-

opment of large systems (Fischer and Ostwald, 2001). However, as most of

the initiatives were still based on building central repositories and portals,

Knowledge Management 27

issues of trust and motivation often led to the abandonment of the systems

(Dignum, 2004a) (Pumareja et al., 2003). In other words, workers resist on

sharing knowledge, since they do not know who is going to access it and

what is going to be done with it. Moreover, the importance attributed to

knowledge may give an impression that these central systems take away a

valuable asset from his or her owner, without giving appreciable benefits in

return.

Currently, a new trend has been inaugurated: Distributed Knowledge

Management (DKM), initiating a new phase in the development of KMSs.

This modality of KM recognizes the users as owners of their knowledge,

prescribing that they should decide the means and conditions for knowl-

edge exchanged (Dignum, 2004a). The idea at the basis of DKM (Bonifacio

and Bouquet, 2002) is supporting the integration of autonomously managed

nodes, without forcing the creation of centralized repositories, indexes or

shared ontologies. Proposals for distributed knowledge management sys-

tems can be found in (Bonifacio et al., 2004) (Guizzardi et al., 2004a) (Yu

and Singh, 2002). This new phase is also largely characterized by the recog-

nition that knowledge cannot be separated from the communities that create

it, use it, and transform it. This realization has motivated organizations on

supporting and even fostering Communities of Practice (CoPs), i.e. groups

of workers who share similar interests, personal affinity and trust.

Common technologies used to implement central organizational memo-

ries are large relational databases or data warehouses, the latter providing

more complex reasoning capability over knowledge (O’Leary, 1998). With

the growing interest for Internet-based applications, much of these reposito-

ries gained web-based interfaces, commonly known as enterprise knowledge

portals (van Elst et al., 2004). Groupware technology, such as the Lotus

Notes platform, has also been largely applied in the development of KMSs

(Pumareja et al., 2003) (Orlikowski, 1992a). Slowly, the system’s underly-

ing technology has shifted to more flexible structures, culminating in the

use of software agents (Abecker et al., 2003) (Gandon et al., 2002) (Preece

et al., 2001) (Yu and Singh, 2002). This paradigm continues to be frequently

researched and applied in the third phase of KMSs evolution, which also in-

28 Theoretical Framework

troduced the use of peer-to-peer architectures to support DKM (Bonifacio

et al., 2004) (Guizzardi et al., 2004a). In the following subsections, we de-

scribe some types of KMSs. We do not intent here to provide a complete list,

but solely to discuss some of the most prominent examples of KM enabling

technology.

Organizational Memory Systems & Content Management

Systems

Organizational Memory (OM) can be defined as the means by which past

knowledge is made available for current activities, enabling the organization

to act more effectively. It includes organizational goals, plans, handbooks,

manuals, and standard operating procedures (Chen et al., 2003). Systems

that support the creation and maintenance of an OM are known as OM sys-

tems (OMSs). They are generally built over advanced database technologies

(such as data warehousing, data mining, and knowledge extraction) and

network technologies (especially Intranet and Internet-based technologies)

(Lehner et al., 1998).

Advanced database and network technologies have created the possibility

to store, retrieve and share large amounts of data. But the storage and re-

trieval of information is hardly the biggest problem in this domain. Rather,

eliciting and contextualizing useful knowledge is the greatest challenge (Chen

et al., 2003). According to (Conklin, 1997), an OM composed only of “for-

mal” knowledge (such as manuals, client information and procedures) is

essentially an immense heap of disconnected things, a giant organizational

attic. More valuable OMs are the ones that document more tacit kinds of

knowledge, such as why decisions have been taken, the content of informal

communication, and the result of particular actions and choices. In this

realm, it is typical to include in the OMSs, records on lessons learned and

best practices regarding specific projects and/or procedures. The former

refers to negative experiences, including choices made and reasons for fail-

ure, in order to avoid similar mistakes in the future; conversely, the latter

documents success stories that are encouraged and expected to be repeated

Knowledge Management 29

(O’Leary, 1998).

OM systems often combine advanced network and database techniques

with different types of technology, for example, case-based reasoning to sup-

port experience management. Delaitre and Moisan (2000) propose case-

based reasoning applied to the OM to support risk management in hazardous

situations, such as fire-fighting; while Henninger (2001) uses this reasoning

technique to allow software developer companies to standardize development

methodologies. Both cases rely on previous experience stored in the OM and

adapt them as a potential solution to a problem at hand.

More recently, a new trend has emerged to provide richer knowledge con-

textualization methods: content management systems. These systems often

use taxonomies and ontologies as a means to provide a conceptualization of

the OM, besides classifying the knowledge items it contains (Davies et al.,

2003a) (Bonifacio et al., 2004). Taxonomies refer to hierarchy of concepts,

usually visualized in a tree-structure. An ontology is a shared conceptu-

alization of a domain, composed of a set of concepts and relations. This

model provides semantics about a specific domain, i.e. by looking at the

model, one is able to understand how the model’s developer (a person or a

community) interpret that specific domain. Ontologies have recently been

in the spotlight, especially with developments related to the SemanticWeb

(Davies et al., 2003b)

Examples of content management systems are Ontoshare (Davies et al.,

2003a) and KEEx (Bonifacio et al., 2004). Ontoshare adopts a shared ontol-

ogy between a community of practice, and encourages the community mem-

bers to annotate documents using RDF, linking them to the shared ontology.

Instead of relying on a centralized conceptualization KEEx, knowledge assets

are assigned to concepts in taxonomies named “contexts”. KEEx support

building and mapping of several contexts, which can be either collective or

individual.

30 Theoretical Framework

Groupware

Groupware systems are computer-based systems that support groups of peo-

ple engaged in a common task (or goal) and that provide an interface to a

shared environment (Ellis et al., 1991). Examples of groupware are workflow

management systems, email systems, chat applications, shared whiteboards,

co-authoring systems, group calendering and scheduling systems, collabora-

tive virtual environments and conferencing systems (Farias, 2002).

Different classifications have been created in order to facilitate under-

standing of the wide variety of existing groupware. Table 2.1 presents a

taxonomy of groupware systems based on the distribution of collaborating

team members in time and space (Ellis et al., 1991). It classifies groupware

applications according to whether they support work at the same place and

time, at the same place but at different times, at different places but at the

same time, or at different places and different times. Thus, following these

considerations of place and time, presented in Table 2.1, electronic meeting

room technology, for example, would fit within the upper left cell. On the

other hand, a physical bulletin board could be placed within the upper right

cell. Video conferencing belongs in the lower left cell and an email system

in the lower right cell.

Same Time Different Time

Same Place face-to-face interac-
tion

asynchronous inter-
action

Different Places synchronous dis-
tributed interaction

asynchronous dis-
tributed interaction

Table 2.1: Groupware taxonomy based on time and space

The importance of the use of groupware to enable KM can be understood

by at least two factors:

1. Groupware supports social interaction and collaboration, considered

essential for knowledge sharing (Nonaka and Takeuchi, 1995).

2. The knowledge exchanged through groupware applications (such as

emails or chat applications) is maintained in messages and/or log files,

Knowledge Management 31

remaining stored for future reference and use.

This recognition has lead to the adoption of groupware in practice in

several organizations. Besides general email systems, the most prominent

example of groupware is IBM Lotus Notes, largely adopted in organizational

intranets (Orlikowski, 1992a) (Robertson et al., 2000) (Pumareja et al., 2003)

(Sumner, 1999).

Decision Support Systems & Expert Systems

Decision Support Systems are computer systems based on reasoning tech-

niques to support the decision making process. They are usually rule-based

and are suitable for semi-structured or unstructured and unanticipated types

of decisions. Expert Systems are special kinds of Decision Support Systems,

which capture the knowledge of an expert in a narrow domain of knowledge

(Luger, 2005). The main aim of Expert Systems is to simulate the problem-

solving behavior of an expert in his/her domain of expertise. These systems

have been applied in a number of different areas such as medicine, for sup-

porting diagnosis Pedersen (2004), education, to support learning by sim-

ulating human tutors (Doyle et al., 1996), and agriculture, for agricultural

management and irrigation control (Hassan et al., 2004).

Decision Support Systems and Expert Systems are very similar in nature.

They are usually composed of a) a knowledge base containing factual knowl-

edge; and b) an inference engine, which applies the knowledge contained in

the knowledge base to solve a specific problem.

Prior to its storage on the knowledge base, knowledge needs to be rep-

resented in a computational form. The most common knowledge represen-

tation technique is the use of rules, i.e. condition-action pairs that indicate

that if the condition is satisfied, the indicated action should be taken. Be-

sides rules, frames are also largely applied. Typically, a frame consists of a

list of properties of the entity and associated values for those properties.

After knowledge has been captured and stored, the inference engine can

now execute its problem-solving strategy, reasoning over the available knowl-

edge. Different strategies may be applied, such as forward or backward

32 Theoretical Framework

chaining. Forward chaining starts by processing a set of conditions and goes

towards the conclusion, while in backward chaining, a conclusion is stated

(for instance, the desired outcome) and the path to that conclusion is then

inferred from the rules.

When compared to the other types of systems here presented, this class of

systems is highly based on AI techniques. Thus, Decision Support Systems

and Expert Systems are much more complex to develop than Groupware

and Content Management Systems. When building Expert Systems, for in-

stance, a knowledge engineer needs to capture the knowledge of an expert

and integrate it into the system before it is deployed. Except in cases in

which machine learning techniques are used to derive new knowledge from

the one previously integrated, the knowledge base keeps static throughout

time. Contrarily, Groupware and Content Management Systems are usually

fed by the users while the system is already running. Furthermore, the na-

ture of of expert knowledge is another source of complexity for this kind of

system. “Expert knowledge is a combination of a theoretical understanding

of the problem and a collection of heuristic problem-solving rules that ex-

perience has shown to be effective in the domain.” (Luger, 2005, pg. 21).

Usually, in order to produce effective results, Expert Systems require knowl-

edge from a well-studied domain, which has clearly defined problem-solving

strategies. Despite these complexity issues, the applications of this class

of systems for Knowledge Management is clear, as it can support managers

and workers of an organization to take flexible decisions, based on knowledge

priorly acquired by other experts in their area of action.

Recommender Systems

Recommender systems support users in selecting items of their interest or

need from a big set of items, helping users to overcome the overwhelming

feeling when facing a vast information source, such as the web, an organiza-

tional repository or the like. This kind of systems has become very popular

in the late 1990s, especially due to the popularization of the Internet and the

consequent danger of information overload. Today, as the number of users

Knowledge Management 33

of the information society grows rapidly, recommender systems are not less

needed.

Having in mind that KM refers to “providing the right people with the

right piece of knowledge, at the right time”, it becomes evident that recom-

mender systems can be of much value in organizational settings. Workers

can rely on recommender systems to find out specific information, or to look

for people who would know what they need.

Recommendations may be based on similar items to those a given user

has liked in the past (content-based recommendation); or on items owned

by users whose taste is similar to those of the given user (collaborative

recommendation) (Balabanovic and Shohan, 1997). Both types of recom-

mendation may be quite beneficial in Knowledge Management communities,

where knowledge is distributed and, thus, the knowledge one needs may be

hard to find and sort out.

Besides the difference given by the aforementioned recommendation ap-

proaches, recommender systems are also differentiated by (Montaner et al.,

2003): the items they recommend (systems have been developed to rec-

ommend web pages (Balabanovic and Shohan, 1997), movies (Good et al.,

1999), etc.); the nature of the user models they use to guide the recommen-

dations (e.g. history of items accessed by the user, topics indicating user

interest, etc.); the recommendation techniques (mainly, how the user model

is represented, what kinds of relevance mechanisms are used to update the

user model, and which algorithm is used to generate recommendations); and

the recommendation trigger, i.e. whether the recommendation is started by

the user or by the proactive behavior of the system.

Enterprise Knowledge Portals

Rather than a different kind of KM system, Enterprise Knowledge Portals

(van Elst et al., 2004) can be seen as a friendly web-based interface to serve

as a unique access point for all KM tools used in an organization. As or-

ganizations adhere more and more to the KM economy, adopting new tools

and applications, such as diverse groupware, different content management

34 Theoretical Framework

systems, and various decision supporting systems, it may be difficult for or-

ganization’s members to keep up with so many knowledge sources. Thus,

Knowledge Portals come to support the integration of these diverse sources,

facilitating knowledge access to all members.

Knowledge portals are also popular as a virtual “home” for communities

of practice. They collect the community’s memory, guide newcomers on

accessing content and tools, and often advertise communities activities and

accomplishments, both for members and outsiders. Examples of knowledge

portals are ECOT (Brazelton and Gorry, 2003) and Knowledge Board 2.

2.2.3 Main Challenges

As reported in the previous section, technology presents a variety of means

to support knowledge capture, structuring and sharing. However, problems

with the acceptance and use of KM systems continue to be reported. These

systems are often abandoned or, in some cases, not explored in their full

potential to improve the work performance of organizational members and

keep knowledge from leaving the organization. Most of the challenges re-

lated to these problems seem to have sociological nature. These problems

profoundly influence how people see and use the adopted KM systems.

The KM literature has mentioned several times that the efficacy of KM

processes and systems are very much impacted by organizational culture

(Allee, 2000) (Orlikowski and Gash, 1994) (Nonaka and Takeuchi, 1995)

(Alavi and Leidner, 1999). As in culture in general, organizational culture

is given by the common sense knowledge, accepted behavior, and cultivated

values within the organization. There are often reports on the fact that the

adopted KM systems are based on architectures and methods that reinforce

old pernicious habits and power structures, instead of creating new and

beneficial dynamics (Newell et al., 1999) (Orlikowski and Gash, 1994). This

shows the need for analyzing the current organizational setting, including

cultural habits and values, in order to propose a solution that reflects the

changes that the organization require, in contrast to reassuring the existing

2http://www.knowledgeboard.com

Knowledge Management 35

vices.

One of the most common problems related to knowledge sharing refers

to the fact that organizational environments lean toward competition rather

than collaboration. Consequently, while KM requires true collaborative be-

havior, work recognition and promotion are usually based on competition

among colleagues (Orlikowski, 1992a). This means that having a specific

piece of knowledge may be the differential that one needs to climb the next

step in his/her career. This problem alone can prevent organizational mem-

bers to volunteer their knowledge. Reviewing evaluation methods to favor

collaboration, and creating an incentive program for knowledge sharing are

often cited as good practices aimed at enhancing the appeal of knowledge

sharing within organizations.

The fear of making mistakes is another cited obstacle for knowledge ex-

change (Orlikowski, 1992a). Generally, people feel that they can explain

things better if they talk directly to the person who needs their knowledge.

They also fear that a static description of their expertise can be mislead-

ing, as knowledge is highly dynamic and difficult to transfer to different

situations. This is a challenge for system developers, for allowing a piece

of knowledge to be contextualized and connected with past knowledge and

experiences. It is also a reminder that the organization should create an

environment which stimulates learning, and is tolerant to mistakes. In fact,

mistakes can be valuable triggers for knowledge creation. This is recognized

by Garvin (1993), who describes situations involving corporate giants such

as IBM and Boeing, in which great successes have been achieved by learning

from past failures.

Related to the fear of making mistakes is the suspicion that something

unethical or inappropriate can be made using one’s knowledge. This may

be characterized as lack of trust, a common reason for keeping one’s knowl-

edge to oneself. Conducive environments for social interaction and network

building, such as communities of practice (refer to section 2.2.4) may be able

to overcome this problem. As for systems, those that provide privacy and

accessibility options controlled by the user are favorable in these situations.

36 Theoretical Framework

Lack of time also scores high in the reasons for not using KM systems,

as does the fact that searching for knowledge requires great effort while

useful knowledge is seldom available (Pumareja et al., 2003) (Orlikowski,

1992a). These problems stem from the fact that the use of KM Systems

are often imposed by top management without an actual revision in the

working processes underlying the organization. In order to guarantee that

the KM system is going to fulfill its promises, it is thus necessary that a

comprehensive analysis of the organizational processes is made, leading to

changes in these processes in order to better accommodate the use of the

adopted technological solution.

Besides these common cited challenges, there can be domain dependent or

organization specific problems. An example is cited by Desouza (2003), who

describes a case involving a software engineering company. In this company,

software engineers regretted and often avoided being considered an expert

in specific languages or methods. Known experts in this organization would

be continuously allocated to participate in projects related to that specific

language or method, which would soon become boring and repetitive. Thus,

something that is usually viewed as a symbol of status and recognition, in

this particular organization was seen as a burden. This demonstrates that an

effective KM solution, both in terms of processes and systems, can only be

attained case by case, after the current organizational culture and processes

are clearly understood.

2.2.4 Theoretical Background

A few KM theories from the point-of-view of the organizational sciences

comply with our views on KM and thus assisted in shaping our work. Here,

we summarize these theories, aiming at describing their main claims and

ideas, so as to provide a flavor of how this thesis approaches KM.

Knowledge Management 37

The Knowledge Management Spiral

Nonaka and Takeuchi (1995) describe the creation and evolvement of knowl-

edge throughout the organization using a spiral metaphor. According to this

metaphor, innovation is generated by cyclic conversions between tacit and

explicit knowledge, as defined in section 2.2.1. Rather than a phenomenon

that is confined in one’s mind, this conversion happens through social inter-

actions between people engaged in actions in a common environment.

There are four different modes of knowledge conversion:

1. Socialization (from tacit knowledge to tacit knowledge): a process

of sharing experiences and thereby creating tacit knowledge such as

shared mental models and technical skills. This process generates what

Nonaka and Takeuchi named sympathized knowledge.

2. Externalization (from tacit knowledge to explicit knowledge): a pro-

cess of articulating tacit knowledge into explicit concepts, metaphors,

analogies, hypotheses or models. The type of knowledge resulting from

this process is called conceptual knowledge.

3. Combination (from explicit to explicit knowledge): a process of sys-

temizing concepts into a knowledge system, involving the combination

of different bodies of explicit knowledge. New knowledge is then ob-

tained through sorting, combining and categorizing existing informa-

tion, resulting in systemic knowledge.

4. Internalization (from explicit knowledge to tacit knowledge): a pro-

cess closely related to “learning by doing”. When experiences through

socialization, externalization, and combination are internalized into in-

dividuals’ tacit knowledge bases in the form of shared mental models or

technical know-how, they become valuable assets. The new knowledge

obtained through this process is called operational knowledge.

The knowledge spiral with its four knowledge conversion modes is illus-

trated on figure 2.2.

38 Theoretical Framework

Socialization Externalization

Internalization Combination

Dialogue

Linking

Explicit

Knowledge

Learning by Doing

Field

Building

Figure 2.2: The Knowledge Spiral (Nonaka and Takeuchi, 1995)

When tacit and explicit knowledge interact, an innovation emerges. For

instance, let us consider an externalization/internalization situation, hap-

pening in a conversation between two people. When a person explains some-

thing to another, he/she is obliged to externalize some of his/her knowledge,

while the other person processes internalization. However, the knowledge the

second person internalizes is not the same tacit knowledge of his/her inter-

locutor. The internalized knowledge gains a new interpretation based on the

listener’s own personal values and experiences. In the conversation process,

the two individuals negotiate meanings, compare their understandings, and

eventually generate new ideas based on their combined views.

While knowledge can only be created by individuals, the organization

has the role of motivating and supporting creative processes, maintaining

an environment that is appropriate for innovation. In other words, the or-

ganization has to mobilize tacit knowledge created and accumulated at the

individual level, amplifying this knowledge through the four modes of knowl-

edge conversion, and crystallizing it at the collective level. When performing

this role, there are five conditions an organization should guarantee to pro-

mote the knowledge spiral:

• Intention: defined as an organization’s aspiration to its goals, it is

Knowledge Management 39

the driving force behind the knowledge spiral. To create knowledge,

business organizations should foster their employees’ commitments by

formulating an organizational intention and proposing it to them. This

can be achieved by stating a mission or creating strategies that can

motivate employees to get involved in knowledge conversion activities.

• Autonomy : all members of an organization should be allowed to act

according to his/her own wishes, as far as the circumstances permit.

Autonomy leads to unexpected opportunities and motivates individu-

als to create and share knowledge.

• Fluctuation and Creative Chaos : fluctuation refers to an order whose

pattern is hard to predict at the beginning, although different from

complete disorder. If organizations adopt an open attitude toward

environmental signals, they can exploit those signals’ ambiguity, re-

dundancy, or noise in order to improve their own knowledge systems.

Chaos is generated naturally when the organization faces a real crisis,

such as rapid decline of performance due to changes in market needs or

significant growth of competitors. But it can also be generated inten-

tionally when the organization’s leaders try to evoke a sense of crisis

among organizational members by proposing challenging goals.

• Redundancy : refers to intentional overlapping of information concern-

ing business activities, management responsibilities, and the company

as a whole. Sharing redundant information promotes the sharing of

tacit knowledge, because individuals can sense what others are trying

to articulate. Redundancy is especially important in a stage in which

a new concept is being development, when it is critical to articulate

images rooted in tacit knowledge. Redundancy also facilitates the

interchange between hierarchy and non-hierarchy. Finally, it provides

the organization with a self-control mechanism to keep it moving in

a certain direction. There are several ways to build redundancy into

the organization. One is to adopt an overlapping approach in which

different functional departments work together in a “fuzzy” division of

labor (“rugby style”). Another way is through a “strategic rotation”

40 Theoretical Framework

of personnel, especially between vastly different areas of technology

or functions such as R&D and marketing. Besides, redundancy can

be achieved by the use of appropriate technology which maintains the

same piece of knowledge available in different points of action.

• Variety : an organization’s internal diversity must match the variety

and complexity of the environment in order to deal with challenges

posed by the environment. To maximize variety, everyone in the orga-

nization should be assured of the fastest access to the broadest variety

of necessary information, going through the fewest steps.

Communities of Practice and Situated Learning

Recently, organizations have recognized communities of practice as a poten-

tial strategy to enable effective knowledge creation and sharing (Allee, 2000)

(Wenger, 1998). This understanding is motivated by the observation that

knowledge cannot be separated from the communities that create it, use it,

and transform it. Communities of practice (CoPs) can be defined as infor-

mal groups of workers generally gathered based on similar interests, common

work, personal affinity and trust. What holds these workers together is a

common sense of purpose and a real need to know what each other knows

(Allee, 2000).

Being in the same department or organization can be beneficial but is

not a strong requirement for the formation of such communities. On one

hand, not all people grouped together in the same space or unit form a CoP.

On the other hand, a CoP can extrapolate the boarders of departments and

organizations, connecting people that are in several units and geographically

dispersed. According to Wenger (1998), what defines a CoP is the combi-

nation of three distinct dimensions: mutual engagement, joint enterprise,

and shared repertoire. Mutual engagement concerns the shared practices

among the participants of a community, i.e. the actions in which they are

engaged, in a constant negotiation of meanings and behaviors. Membership

to a community thus depends on being involved in these same actions and

negotiation processes. By joint enterprise, the author means the common

Knowledge Management 41

objectives and mutual accountability shared by community members, as a

result of the collective processes in which they are involved. Joint enterprise

controls the community’s rhythm, and functions as a tool for coordination

and sense-making. And finally, shared repertoire refers to the resources cre-

ated or used in the course of the community’s existence. These resources

include routines, words, tools, procedures, stories, symbols, actions, and

concepts.

In the perspective of organizational work, what makes these environments

appealing is the fact that the dynamics of the community lead people to nat-

urally share knowledge and learn from each other. Lave et al. (1991) argue

that learning is situated, i.e. it happens as a product of activity, context and

culture. Rather than asking what kinds of cognitive processes and concep-

tual structures are involved, situated learning focuses on what kinds of social

engagements provide the proper context for learning to take place. CoPs

can provide this context, being an ideal environments for the enhancement

of performance of old-timers, while at the same time supporting newcomers

to engage into organizational practices.

According to the situated learning theory, people are part of CoPs that

embody a set of beliefs, norms and behaviors (i.e. culture), where they

acquire and exchange knowledge. Lave et al. (1991) claim that this pro-

cess leads to legitimate peripheral participation, which concerns the process

by which newcomers become part of the community. In the beginning, a

newcomer is in the periphery of the community. As the newcomer moves

from the periphery to the community’s center, he/she becomes more active

and engaged within the culture, hence assuming the role of expert or old-

timer. At the same time, legitimate peripheral participation also takes into

accounts the transformation of communities of practice, as a result of their

members’ interaction and practices.

Situated learning is very much related to the idea of apprenticeship, where

a learner evolves his knowledge and abilities by assisting an expert in doing

his work. In contrast with formal education, in apprenticeship settings, the

learner does not gain a discrete body of abstract knowledge, which can be

transported and reapplied in later contexts. Instead, he/she acquires the

42 Theoretical Framework

skill to perform by actually engaging in the process.

It is important to note that CoPs cannot be forcibly created, but they

may be fostered, by acquiring from the organization the means to grow and

mature within working settings (Gongla and Rizzuto, 2001) (Dignum and

van Eeden, 2003). Dignum and van Eeden (2003) emphasize the importance

of setting up real targets to communities of practice, guaranteeing their value

for the organization to be concretely perceived and measured. In addition

to that, fostering also includes creating the conditions for a community to

emerge, both giving social and technological support for it. In the social

dimension, community members can, for instance, be rewarded and remem-

bered. As for the technological support, an appropriate infrastructure needs

to be provided to facilitate knowledge sharing.

Distributed Knowledge Management

Distributed Knowledge Management (DKM) (Bonifacio and Bouquet, 2002)

has recently appeared as an attempt to provide an alternative to centralized

systems, which often lead to abandonment or misuse. According to DKM

proponents, KM is generally faced and pursued according to an objectivistic

epistemology, in which knowledge can be expressed following an objective

and general codification (based on a supposedly shared conceptualization

and understanding between organizational members). Besides, it is also

assumed that knowledge can be shared and reused disconnected from the

individual or community that has created it. In addition to that, traditional

organizational models and paradigms of control are usually privileged, lead-

ing to centrally managed knowledge bases, containing knowledge that once

made explicit, is property of the organization.

Contradicting this view, DKM focuses on the social and subjective na-

ture of knowledge. According to this theory, an organization is formed by

multiple units named Knowledge Nodes, defined as individuals, teams or

communities that have different terminology and working practices. These

Knowledge Nodes should be allowed to locally manage their own knowledge,

thus having knowledge property and autonomy with respect to sharing it

Constructivism 43

with others. KM becomes a problem of coordinating these multiple sources

of knowledge in a distributed way. So, while sharing knowledge, the source’s

terminology (or interpretative schema) should be communicated, and per-

haps translated to the destiny’s terminology, thus providing the context in

which that knowledge was created. In summary, these assumptions can be

summarized in two principles (Bonifacio and Bouquet, 2002):

• Principle of Autonomy: each unit (person or group) should be granted

a high degree of autonomy to manage its local knowledge;

• Principle of Coordination: each unit must be enabled to exchange

knowledge with other units not by imposing the adoption of a single,

common interpretative schema but through a mechanism of mapping

other units’ context onto its context from its own perspective.

In order to enable knowledge sharing, technology should be shaped re-

flecting these principles, resulting in a distributed architecture.

2.3 Constructivism

Knowledge Management is indirectly aimed at learning, as one of its main

objectives is to allow members of an organization to evolve in terms of gain-

ing knowledge and developing skills. This suggests that a special attention

should be given to understanding and analyzing how knowledge emerges in

human thinking, acting and interacting with the world.

Note that, here, we refer to learning processes undertaken without par-

ticular educational intervention, but rather unintentionally, embedded in

people’s daily routine. Complying with this view, Constructivism is based

on the active participation of individuals in the construction of their own

knowledge, instead of being instructed. In this sense, the person’s cognitive

system cannot be seen as an empty vessel to be filled in. Instead, each new

element assimilated by the cognitive system will be contrasted and combined

with the already existing elements, according to the understandings of that

particular individual.

44 Theoretical Framework

Although agreeing on a few general principle (e.g. active and autonomous

participation of learners in the learning process, learner’s self-construction,

etc), different theorists have presented their own views on Constructivism,

focusing on different elements to explain how knowledge emerges. Here, we

summarize the main contributions of four thinkers that have profoundly in-

fluenced how we view knowledge creation in this work. Later in this chapter,

we present a general discussion, comparing and contrasting the described

contributions, and relating them to the KM theories discussed in section

2.2.4.

2.3.1 Jean Piaget: Genetic Epistemology

Piaget’s theory (Piaget and Inhelder, 1969) suggests that knowledge is orig-

inated by a continuous construction and elaboration of new cognitive struc-

tures through a central cognitive equilibration process. In general, a modifi-

cation in the environment generates a perturbation in the individual’s cogni-

tive system, taking it out of a state of virtual equilibrium. As this cognitive

system is conditioned to seek equilibrium, it tends to stabilize although real

equilibrium can never be completely achieved. New stabilization, given by

another temporary cognitive equilibrium state, depends on assimilation and

accommodation processes. First, assimilation allows that an external ele-

ment is incorporated in the individual’s conceptual schemas. Subsequently,

this new element is accommodated in the existing mental model, consid-

ering the characteristics of this element and contrasting it with what the

individual already knows. This process is illustrated in Figure 2.3.

Figure 2.3 depicts the cognitive balancing process as a spiral. The line in

the center of the spiral represents the real equilibrium that although sought,

is never actually achieved by the individual. In several moments (indicated in

the figure by black dots), the individual experiences a perturbation triggered

by modifications in the environment with which he/she interacts. This is

followed by phases of assimilation and accommodation that finally leads

to another virtual equilibrium state. In a following moment, there is a

new perturbation, triggering another cycle. At each stage, the individual

Constructivism 45�� � �� � � ���� � ���

	 ��
 � � �� � � ���� � ����� �
 � �� �
 ��
�� � �� ���
 ��
 �
�� � ��� � � �
 ��
 �� � �� �
Figure 2.3: Cognitive balancing process

broadens his/her mental model, which is represented in the figure by the

growing spiral arcs.

Although not extensively focusing on social interaction, Piaget has shown

its importance for learning (de La Taille, 1992). According to him, the

stages of development of the logical operations correspond to the correlative

stages of social development. In a child’s sensorimotor stage, there is no

socialization of intelligence, i.e. knowledge sharing, which can only begin

with language acquisition. However, even after learning how to speak, in

the preoperational stage, some characteristics prevent children to establish

effective knowledge sharing. On one hand, the child lacks the ability to com-

mit to a common system of meanings with other individuals. On the other

hand, he/she does not necessarily maintain his/her points of view through-

out the dialogue. And finally, the child is not able to place himself/herself

in the point of view of the other, and thus reciprocity relations are not es-

tablished. These three characteristics form what Piaget called egocentric

thinking. Starting from the operational stage, with the emergence of logical

thinking, the child overcomes egocentric thinking and is finally able to es-

tablish a real dialogue, by expressing his/her individual points of view while

contrasting it with the perspectives of others.

46 Theoretical Framework

2.3.2 Lev Vygotsky: Social-historic Constructivism

Vygotsky (1978) has emphasized the role of culture and social interactions in

learning processes. For him, culture has a great impact in the development

of one’s intelligence. It is through the interaction with family members and

other persons of his/her environment that a child creates his/her conceptu-

alizations and develops his/her mental abilities. This is clear in Vygotsky’s

following statement:

“Every function in the child’s cultural development appears twice: first,

on the social level, and later, on the individual level; first, between people (in-

terpsychological) and then inside the child (intrapsychological). This applies

equally to voluntary attention, to logical memory, and to the formation of

concepts. All the higher functions originate as actual relationships between

individuals.” (Vygotsky, 1978, pg. 57)

According to this Russian psychologist, humans are capable of individ-

ually constructing knowledge up to a certain level, called level of real de-

velopment. But a person can go beyond this level, to the level of potential

development, if helped by a more capable peer, usually a parent, a teacher,

or a more experienced peer. The difference between these two levels is what

Vygotsky called the zone of proximal development. Vygotsky’s theory is

illustrated in figure 2.4.

potential development

level

real development

level

current knowledge

zone of proximal development

individually

achieved

interacting with

most-able peer

Figure 2.4: Illustration of Vygotskys theory

2.3.3 Seymour Papert: Constructionism

Papert has been one of the first thinkers to realize the potential of computer

technology in the development of intelligence (Papert, 1993). In the sixties,

he proposed the use of computers as an educational strategy, and created

Constructivism 47

the programming language named LOGO to enable children to build and

explore graphics and simulations as instruments of learning and enhancing

creativity.

The core idea in the Constructionist theory proposed by Papert is illus-

trated in figure 2.5. He claims that individuals learn more effectively when

engaged in the construction of something external and sharable, such as a

sand castle, a robot, a computer program, or a book. This leads to a cycle

of internalization and externalization of knowledge, motivated by the con-

struction of an external object that has meaning to the individual and to

those that surround him/her.

internalization and

externalization cycles

Figure 2.5: Knowledge internalization and externalization cycles motivated
by the construction of a sharable and concrete artifact

2.3.4 Paulo Freire: Dialogue enables Learning

Paulo Freire is one of the most prominent educators of our century. His expe-

rience has included teaching children and adults from different backgrounds

and social levels. He has emphasized that the learning process is not in-

structional but rather dialogical (Freire, 1970). In this sense, instructor and

pupil should be viewed at the same time as educators and learners, respect-

ing each other by what they know, and gaining new knowledge together by

negotiating content and strategies. Given that KM is informal rather than

curriculum-based, his claim is especially relevant for our purposes.

Freire has proposed that the main purpose of gaining new knowledge is

to enable critical thinking and the active engagement of the learner in the

48 Theoretical Framework

construction and enhancement of his own reality (Freire, 1970). For that,

he has argued that the educational process should have its foundation in

the consciousness of the day-to-day situations lived by the learners. Thus

selecting themes that are related to the pupils’ daily lives can lead to better

results than choosing subjects that have no attachment to their reality.

One of Freire’s particular claims regards the real gains of motivating

learners to ask questions. According to his Pedagogy of Question (Freire

and Fagundez, 1992), a question is the first “knowledge sparkle”. By this

means, one is able to externalize some of his knowledge at the same time

as reflecting about what information he/she possesses in contrast to what is

missing. In fact, it is through question and answering that we solve many

of our problems in daily life, being it at work, at family encounters, or in

other endeavors. And besides, questions are also the beginning of any scien-

tific work, in which finding relevant research questions express the maturity

of the one seeking for a scientific breakthrough. It is important to note

that questioning and answering here are not merely part of an intellectual

game, but rather an important ingredient of the word-action-reflection triad.

In this sense, reflection leads to the expression of doubts that are directly

connected to action.

Different cultural aspects can impel or constrain the act of questioning.

A democratic environment is more appropriate than an authoritarian one.

According to Freire and Fagundez (1992), authoritarianism prevents curios-

ity, since questioning can be seen as challenging authority. In addition to

that, dialog requires an environment where mistakes are tolerated and even

valued as a means for learning and improving performance.

2.4 The Agent-oriented Paradigm

Winograd (1995) claims that in the mid 1990’s, there was a shift in software

development from a programming to a design centered view. By then, soft-

ware engineers had realized that it was more difficult to understand which

functionality a system should exhibit than correctly codifying functionality

The Agent-oriented Paradigm 49

in a programming language. The biggest effort should then be put on model-

ing the interactions between system and stakeholders, rather than on coding

and debugging software. This observation triggered the adoption of many

different software development approaches and methods, from the object-

oriented software engineering paradigm through participatory methods and

prototyping practices.

The agent-oriented paradigm comes again as one more step in the evo-

lution of software engineering approaches (Jennings et al., 1998) (Parunak,

2000). Jennings et al. (1998) claim that agents have become so attractive due

to their ability to naturally and easily characterize a variety of applications.

We agree with this view. Agents are more able than objects to represent

active entities of a domain or a system. In fact, our world is composed of

active and passive entities. For instance, in an organizational setting, an

employee is an active entity, while the resources he uses for his work are

passive. Similarly, we can conceive a system composed of active entities

(agents) that manipulate a number of passive resources or information en-

tities (objects) to accomplish their tasks. Therefore, especially with respect

to organizational software, the agent paradigm presents much more power-

ful abstractions to analyze and model the complexities and idiosyncrasies of

the organizational setting. It allows the view of organizations, humans and

software systems as intentional entities that interact on the pursuit of both

common and individual goals, and on the execution of tasks.

The main characteristic that distinguish an agent from an object is its

capacity to act autonomously (Jennings et al., 1998) (Parunak, 2000). This

work takes the definition of autonomy proposed by Jennings et al. (1998).

According to this definition, to say that agents are autonomous means that

(to some extent) they have control over their behavior and can act without

the intervention of humans. Objects do have control over their state, but

not of their behavior. In other words, once an object B invokes a method

of object A, the method is executed. In agent-based systems, actions are

executed by request, i.e. an agent B must issue a request to agent A, which

then decides whether or not the action fits its own internal motivations,

before executing it.

50 Theoretical Framework

The agent paradigm has been shaped by developments from several re-

search areas, such as distributed computing, object-oriented systems, soft-

ware engineering, artificial intelligence, economics, sociology, and organiza-

tional science (Jennings et al., 1998). Still today, two main viewpoints on

agents can be identified in the agent research community.

• The Software Engineering perspective takes agent as a powerful meta-

phor to develop software. In this perspective, the software system can

be thought of as a group of active entities (agents), each one having

its own goals and behavior. The sum of this “more simple” behavior

gives the multiagent systems (MAS) overall complex behavior. Con-

sequently, MAS are referred to as more than the sum of its parts.

• The Artificial Intelligence perspective emphasizes the intelligent and

flexible behavior of agent, characterizing it as an autonomous entity,

capable of both reactive and proactive (go-driven) behavior, and social

ability.

Although we acknowledge the importance of the Artificial Intelligence

research, and especially those targeted at understanding the mentalistic

concepts attributed to agents, such as beliefs, desires, intentions (Rao and

Georgeff, 1991) and commitments (Castelfranchi, 1995), here we take a Soft-

ware Engineering view. This choice is justified by our main concern of ex-

ploring the potentials of the agent-oriented approach for the analysis, design

and development of KM enabling systems.

2.4.1 Agents’ Definitions and Attributes

There is not a consensus on the definition of agents and their attributes.

Weiss (1999) states that agents are autonomous computational entities,

which can be viewed as perceiving their environment through sensors and

acting upon their environment through effectors. Figure 2.6 shows an ab-

stract top-level view of an agent. It shows that the agent takes sensory

input from the environment, and produces actions that affect this environ-

The Agent-oriented Paradigm 51

ment as output. The interaction is usually an on-going, non-terminating one

(Wooldridge, 1999).

Agent

Environment

Sensor

input

Action

output

Figure 2.6: An agent interacting with the environment (Wooldridge, 1999)

As there is no agreement on the definition of agent, the same happens re-

garding intelligence. For Wooldridge (1999), an agent is called intelligent if it

can act flexibly towards achieving its goals, which mean that the agent must

be reactive, pro-active, and have social ability. These three characteristics

are described as follows:

• reactivity: intelligent agents are able to perceive their environment,

and respond in a timely fashion to changes that occur in it;

• pro-activeness: intelligent agents are able to exhibit goal-directed be-

havior by taking the initiative;

• social ability: intelligent agents are capable of interacting with other

agents.

Other researchers, such as Sen and Weiss (1999) think that a system being

considered as intelligent is also expected to be able to learn. According

to them, learning can be defined as the acquisition of new knowledge and

motor and cognitive skills and the incorporation of this knowledge and skills

in future system activities, provided that this acquisition and incorporation

is conducted by the system itself and also leads to an improvement in its

performance. In other words, saying that an agent has learning ability means

that the agent is going to improve its future behavior, based on knowledge

and skills it has acquired in past experiences.

52 Theoretical Framework

Agents may also exhibit other attributes, such as mobility, veracity, be-

nevolence and rationality. This does not mean that every agent will have all

these characteristics. This depends on the nature of its tasks and should be

decided by the designer. These attributes are defined as follows (Wooldridge

and Jennings, 1995):

• mobility: is the ability of an agent to move around electronic networks;

• veracity: is the assumption that an agent will not knowingly commu-

nicate false information;

• benevolence: is the assumption that different agents do not have con-

flicting goals, and that every agent will therefore always try to do what

is asked of it;

• rationality: is the assumption that an agent will act in order to achieve

its goals and will not act in such a way as to prevent its goals from

being achieved.

A system composed of two or more agents that interact in order to achieve

a common goal is called a multiagent system (MAS) (Wooldridge and Jen-

nings, 1995). In a MAS, it is possible to encounter agents with different

levels of intelligence. Depending on the agent’s goals, it is necessary to pro-

vide it with knowledge and an inference mechanism, so that it can reason

and decide how it should act. On the other hand, other agents might have

goals that do not require much intelligence, but require that they should be

mobile, for example. As mentioned before, the decision about the attributes

that an agent must have depends on its internal requirements.

“A MAS can be seen as a loosely coupled network of problem solvers that

work together to solve problems that are beyond the individual capabilities or

knowledge of each problem solver. The characteristics of MAS are: a) each

agent has incomplete information, or capabilities for solving the problem,

thus each agent has a limited viewpoint; b) there is no global system control;

c) data is decentralized; and d) computation is asynchronous.” (Jennings

et al., 1998, pg. 285)

The Agent-oriented Paradigm 53

Note that such characteristics of MAS apply for artificial or human soci-

eties. Thus, we infer that a MAS composed only by humans, or by a mix of

humans and artificial agents inherit the same kinds of problems described

by Jennings et al. (1998) regarding purely artificial MAS. These problems

regard, among others, the coordination of actions, the conciliation of mul-

tiple intentions, the allocation of limited resources, and the guarantee for a

noiseless communication.

2.4.2 Agent-oriented Software Engineering

Methodologies and Languages

Agent Technology has received a great deal of attention in the last few

years and, as a result, the industry is beginning to get interested in using

this technology to develop its own products. The role of agent-oriented

methodologies is to assist in all the phases of the life cycle of an agent-based

application (Iglesias et al., 1999), although different ones emphasize one or

more development activities. In this section, we present some languages and

methodologies specifically tailored for the analysis and design of agent-based

systems. Whilst a comprehensive review of all methodologies and languages

is beyond the scope of this thesis, we here attempt to provide some of the

most prominent approaches.

The Gaia Methodology

According to (Wooldridge et al., 2000), the extended approaches based

on the object-oriented view fail to adequately capture agent’s flexible, au-

tonomous problem-solving behavior, the richness of agents’ interactions , and

the complexity of agent systems’ organizational structures. For these rea-

sons, the Gaia methodology has been specifically elaborated for the analysis

and design of agent-based systems. Analysis and design can be understood

as a process of developing increasingly detailed models of the system to be

constructed. Figure 2.7 shows the Gaia models applied in each of these

development activities.

54 Theoretical Framework

Requirement

Specification

Role Model
Interaction

Model

Agent

Model

Service

Model

Acquaintance

Model

Analysis

Design

Figure 2.7: The Gaia models (Wooldridge et al., 2000)

For Gaia, a multi-agent system can be viewed as an organization, in

which the agents assume different roles. These roles have a certain relation-

ship among themselves and each one of them will participate in systematic

interactions with the others. The analysis stage is dedicated for the under-

standing of this organization, and this is made with the aid of two models:

the roles model and the interaction model.

A role is defined by four attributes: responsibilities, permissions, activities

and protocols. The responsibilities define the functionalities of the role.

The permissions are the “rights” associated with the role to allow it to

perform its responsibilities. In other words, the permissions identify the

resources that are available for the role, typically information resources. So,

a role can be associated to the ability of reading, modifying or generating

a certain information. Activities are computations that can be executed by

the role alone, without interaction with other roles. On the other hand,

protocols define the way the role interacts with other roles, while executing

its responsibilities. The roles model can be precisely defined as a set of role

schemata, one for each of the system’s roles.

There are dependencies and relationships between several roles in a multi-

agent organization. This is central in the way the system works. For this

reason, the interactions must be captured and represented in the analysis

stage. In Gaia, these links between roles are represented in the interaction

model.

The interaction model consists of a set of protocol definitions, one for each

The Agent-oriented Paradigm 55

role interaction. Here, the focus is in the essential nature and the purpose of

the interaction, and not in a precise order of a particular exchange of mes-

sages. The protocol definition determines a textual description (proposal) of

the interaction, its initiator and the responder, its inputs and outputs and

a brief textual description of its process.

The aim of a “classic” design is transforming the abstract models derived

during the analysis stage into models at a sufficiently low level of abstraction

that they can be easily implemented. This is not the case with agent-oriented

design, however. Rather, the aim in Gaia is to transform the analysis models

into a sufficiently low level of abstraction that traditional design techniques

(including object-oriented techniques) may be applied in order to implement

agents. To put it another way, Gaia is concerned with how a society of

agents cooperate to realize the system-level goals, and what is required of

each individual agent in order to do this. Actually how an agent realizes

its services is beyond the scope of Gaia, and depends on the particular

application domain.

The Gaia design process involves generating three models: the agent

model; the services model and the acquaintance model. The agent model is

concerned to documenting the various agent types used in the system, also

assigning one or more roles to each type. The services model identifies the

services associated to each role. And the acquaintance model defines the

communication links that exist between agent types.

The design process can be summarized as follows:

1. creating the agent model: a) aggregating roles in agent types; b) refin-

ing it to create an agent hierarchy; and c) documenting the instances

of each type;

2. developing the services model, examining activities, protocols and re-

sponsibilities of each role;

3. developing an acquaintance model, derived from the interaction and

agent models.

56 Theoretical Framework

ROADMAP

ROADMAP (Juan et al., 2002) focuses on building open systems and empha-

sizes the societal aspects of an agent system. This methodology extends Gaia

by introducing use-cases for requirement gathering, explicit models of agent

environment and knowledge, and interaction model based on AUML interac-

tion diagrams. Figure 2.8 presents the models adopted by this methodology.

Use Case

Model

Role Model

Interaction

Model

Agent

Model

Service

Model

Acquaintance

Model

Specification

and Analysis

Design

Environment

Model

Knowledge

Model

Protocol

Model

Figure 2.8: The ROADMAP models (Juan et al., 2002)

Traditional UML Use Case Diagrams are applied to gather system re-

quirements. These case diagrams are then used to generate two other mod-

els: the environment and the knowledge models, which present a general

view of the system’s environment and knowledge respectively.

The Environment Model consists of a tree hierarchy of zones in the envi-

ronment, and a set of zone schema to describe each zone in the hierarchy.

A zone schema includes a text description of the zone, and the following

attributes: objects, constraints, sources of uncertainty and assumptions.

The Knowledge Model consists of a hierarchy of knowledge components,

and a description for each knowledge component. Besides identifying and

decomposing knowledge components disposed in a hierarchy, this model is a

result of the analysis of these components’ life cycles, determining how the

knowledge components are generated, consumed and stored.

The Role Model extends its correspondent model in Gaia with a role hi-

erarchy. The role hierarchy is represented as a tree of roles, in which leaf

nodes of the tree are atomic roles, while the others are composite roles. The

The Agent-oriented Paradigm 57

atomic roles retain their original definition and represent characteristics of

individual agents. The composite roles are defined in terms of other roles,

whether atomic or composite. Roles are defined as in Gaia, having per-

missions and responsibilities. Besides this, ROADMAP Role schema has

two additional attributes: sub-roles and knowledge. The former lists the

sub-roles of a composite role, representing the local organization structure.

The latter represents local social knowledge, emerging from the interaction

of sub-role knowledge. Roles can be changed at run-time given the correct

authorization (i.e. a permission to access and modify the definition of other

roles). Instead of immutable contract of behavior, roles should be consid-

ered as long-term agreement of behavior that can be reasoned and changed.

This difference allows a computing organization modeled in roles to be more

flexible.

The old Gaia interaction protocols are here subsumed by the Protocol

Model, which are then refined into AUML interaction diagrams (refer to

section 2.4.2), which compose the Interaction Model. In this respect, the only

additional feature is the representation of zones in the interaction diagrams.

With the adoption of AUML interaction diagrams, ROADMAP aims at

providing a more flexible and dynamic way to model agent’s interactions.

No addition is made in the design models related to the ones proposed

in Gaia. Like previously, all models from the analysis are carried out into

design, where the Agent, Service and Acquaintance models are designed for

the system.

The ROADMAP methodology provides strong support for engineering

complex open systems, but is less suitable for application not requiring these

properties. In cases of systems having static nature, simple environment and

lack of knowledge, creating the models prescribed by ROADMAP simply

causes extra overhead (Juan et al., 2004).

OperA

The OperA methodology (Dignum, 2004a) allows for the formal specification

of agent societies (i.e. a system is seen as an organization or society of

58 Theoretical Framework

agents). OperA at the same time, facilitates the discussion with domain

experts that are not knowledgeable in agent theory, and is based on a formal

semantics that make verification possible.

OperA modeling approach consists of two main phases: the first phase

is dedicated to build an Organizational Model, which comprehends the def-

inition of the organizational structure and global behavior of the system;

in the second phase, the organizational structure is actually populated by

agents, and specific conditions are agreed for their enacting of the orga-

nizational roles. This second phase is accomplished through two different

models, namely the Social and the Interaction models.

The Organizational Model specifies the organizational characteristics of

an agent society in terms of four structures:

• Social structure: specifies objectives of the society, its roles and what

kind of model governs coordination.

• Interaction structure: details interaction moments (scene scripts) that

represent a society task that requires the coordinated action of several

roles; and gives a partial ordering of scene scripts, which specify the

intended interactions between roles.

• Normative structure: describes society norms and regulations in terms

of role and interaction norms.

• Communicative structure: specifies the ontologies for description of

domain concepts and communication illocutions.

In the Social Model, the enactment of roles by agents is fixed in social con-

tracts that describe the capabilities and responsibilities of the agent within

the society, that is the agreed way the agent will fulfill its role(s). Because

the society designer does not control the design and behavior of individual

agents, there is a need to verify the actual behavior of a society population.

This is done by analyzing the agreements specified in the social contracts.

The use of contracts to describe activity of the system allows, on one hand,

The Agent-oriented Paradigm 59

for flexibility in the balance between organizational aims and agent desires,

and, on the other hand, for verification of the outcome of the system.

In the Interaction Model, concrete interaction scenes are dynamically cre-

ated by role-enacting agents, based on the interaction scripts specified in

the OM. Role enacting agents negotiate specific interaction agreements with

each other. Such interaction commitments are fixed in interaction contracts.

As in the Social Model, interaction contracts allow on one hand for flexibility

and personalization of the organizational design, and on the other hand, for

the verification of design and activity. That is, it can be verified whether the

interaction agreements between a specific population satisfy and are suffi-

cient for the organizational interaction aims specified in the Organizational

Model.

The choice for modeling the systems in these two distinct phases, one

for modeling the society and the other to enable the population of the soci-

ety makes OperA very suitable for situations that involve the integration of

agents developed by several parts. In fact, OperA assumes that the agents

composing the system are already designed beforehand. Thus, OperA con-

sists of a methodology to combine these agents into a system that exhibits

coherent behavior and meets the needs defined by the system requirements

(Organizational Model), rather than proposing a design methodology which

develops the agents from scratch to compose a system.

Tropos

Tropos is an agent-oriented software development methodology for engineer-

ing distributed systems (Bresciani et al., 2004). The methodology adopts

a model-driven approach, i.e. it guides the software engineer in building

a conceptual model, which is incrementally refined and extended, from an

early requirements model, namely a representation of the organizational set-

ting where the system-to-be will be introduced, to system design artifacts.

Indeed, a distinctive feature of the methodology with respect to current

agent-oriented methodologies is that of filling the gap between requirements

analysis and system architecture design, by adopting an uniform notation

60 Theoretical Framework

and an uniform analysis technique to model business goals, system require-

ments and system architecture.

Tropos uses a conceptual modeling language derived from the i* frame-

work (Yu, 1995), which provides a graphical notation and a set of techniques

for goal analysis. This notation has been extended in order to allow for infor-

mal and formal specifications. Basic constructs of the conceptual modeling

language are those of actor, goal, plan, softgoal, and resource:

• an actor can represent a stakeholder in a given domain, a role or a set

of roles played by an agent in a given organizational setting;

• a goal represents the strategic interests of actors. Two basic types of

goals are considered, namely hardgoals and softgoals, the latter hav-

ing no clear-cut definition and criteria as to whether they are satisfied.

This difference is captured in (Chung et al., 2000), which suggests to

say that (hard) goals can be satisfied, while softgoals can be satis-

ficed. Softgoals are useful to represent how a state of affairs should

be reached, that is they can represent goal/plan qualities and non-

functional requirements.

• a plan (or task) specifies a particular way of doing something, i.e. a

particular course of action that can represent a means for satisfying a

goal or for satisficing a softgoal;

• a resource is a physical or informational entity used in a given task or

to achieve a certain goal.

A dependency link between pairs of actors allows the analyst to model the

fact that one actor depends on another in order to achieve a goal, execute a

plan, or acquire a resource. The former actor is called the depender, while

the latter is called the dependee. The object (goal, plan resource) around

which the dependency centers is called the dependum. If the dependee fails

to deliver the dependum, the depender would be adversely affected in its

ability to achieve its goals. In this sense, the depender becomes vulnerable

due to its dependency links. This type of information can be graphically

The Agent-oriented Paradigm 61

depicted in an actor diagram, a graph whose nodes represent actors (circles)

and whose arcs represent dependencies (a couple of arrows linked by its

dependum).

The process of model building in Tropos has been specified in (Bresciani

et al., 2004) in terms of a non-deterministic concurrent algorithm, here we

give a qualitative description. Model building begins with the definition of

a number of actors, each with a list of associated main goals (or softgoals).

Notice that at the beginning, the minimum set of actor goals which relates

to the analysis purpose is explicitly modeled. Throughout the refinement of

the model, further goals may be included.

Each root goal is analyzed from the perspective of its respective actor

and depicted in a sort of balloon, called the goal diagram. For instance,

goal means-end analysis proceeds by refining a goal into sub-goals, plans,

and resources that provide means for achieving the goal (the end). Con-

tribution analysis allows the analyst to point out goals and softgoals that

can contribute positively or negatively in reaching the goal being analyzed.

Decomposition allows for a combination of AND and OR decompositions of

a root goal into sub-goals, thereby refining a goal structure. The generated

sub-goals are delegated to other actors, or remain a responsibility of the

actor itself. Sometimes new actors need to be introduced, to whom some

goals and/or tasks are delegated. For instance, in order to represent the

role of technology at support of the organization’s processes, new actors are

introduced, refining a model of the organization’s needs into a model of the

requirements for an information system able to meet these needs. Softgoal

analysis is typically used to drive the choice of a particular choice among dif-

ferent alternatives that may emerge during OR-goal decomposition (Chung

et al., 2000). Modeling is complete when all goals have been dealt with to

the satisfaction of the actors who pursue them.

Prometheus

The Prometheus (Padgham and Winikoff, 2002) methodology focuses on

building agents using BDI platforms and on providing explicit and detailed

62 Theoretical Framework

processes and deliverables suitable for use by industry practitioners with

limited agent experience, or by undergraduates. Having in mind the de-

velopment of large industrial applications, this methodology is based on an

incremental development, which allows constant refinements in artifacts and

documentation. Prototyping of skeleton code is enabled during these refine-

ments, allowing for a better understanding of the system’s behavior before

its actual complete implementation.

Prometheus methodology consists of three activities: system specifica-

tion, architectural design, and detailed design. The system specification

activity focuses on identifying the basic functionalities of the system, along

with inputs (percepts), outputs (actions) and any important shared data

sources. Use case scenarios, adapted from UML, are created to provide a

more general view of the interaction between actions, percepts and function-

alities.

Architectural design uses the outputs from the previous activity to de-

termine which agents the system will contain and how they will interact.

During this stage of the design, it is important to identify the events that

the agent will respond to. Agent messages are also identified, forming the

interface between agents. Possible shared data objects should also be iden-

tified at this stage.

Detailed design looks at the internals of each agent and how it will accom-

plish its tasks within the overall system. The focus is on defining capabilities

(modules within the agent), in terms of internal events, plans and detailed

data structures.

Prometheus supports the engineering of conventional closed systems with

controlled and trusted agents. It specifically supports the BDI framework,

and focuses on functionalities. However it lacks support for advanced prop-

erties such as openness and is not suitable for systems requiring these prop-

erties (Juan et al., 2004).

The Agent-oriented Paradigm 63

AUML

AUML presents an agent as an extension of active objects, exhibiting both

dynamic autonomy (the ability to initiate action without external invoca-

tion) and deterministic autonomy (the ability to refuse or modify an external

request). Other capabilities, such as BDI mechanisms, mobility and explicit

modeling of other agents can also be added as extensions to the basic AUML

agents (Odell et al., 2000).

The AUML proposal takes UML, which is an accepted formalism in aca-

demic and commercial environments and extends and adjusts this language

to the context of agents. According to AUML proponents, UML provides

tools for modeling many of the concepts regarding agents, such as interac-

tion protocols and internal behavior (Odell et al., 2000). In other cases,

the authors suggest UML extensions that support additional concepts. The

proposed modifications include (Wooldridge and Ciancarini, 2001):

• support for expressing concurrent threads of interaction, thus enabling

UML to model such well-known agent protocols as the Contract Net;

• a notion of “role” that extends that provided in UML, and in partic-

ular, allows the modeling of an agent playing many roles.

It is important to point out that, like UML, AUML is rather a modeling

language than a methodology. This means the proposed models can be used

in different ways, according to the adopted methodology.

MessageUML

MESSAGE (Methodology for Engineering Systems of Software Agents), also

known as MessageUML, is an agent-oriented methodology that builds upon

current software engineering best practices covering analysis and design of

MAS (Caire et al., 2001). MESSAGE uses a notation that is based on UML

whenever appropriate. More specifically, MESSAGE’s modeling language

is related to UML as follows: a) it shares a common metamodeling lan-

guage (meta-metamodel) with UML and MOF; and b) it extends the UML

64 Theoretical Framework

metamodel with ‘knowledge level’ agent-oriented concepts. The main UML

behavioral concepts that are used to define the ‘physics’ of the MESSAGE

worldview are: action, event and state.

The main contributions of MESSAGE are its proposed agent knowledge

level concepts and diagrams for viewing these concepts in the analysis model.

Most of the MESSAGE knowledge level entity concepts fall into the main

categories: ConcreteEntity, Activity, and MentalStateEntity.

A ConcreteEntity can have the following types:

• Agent: is an atomic autonomous entity that is capable of performing

some (potentially) useful function. SoftwareAgent and HumanAgent

are specializations of Agent.

• Organization: is a group of agents working together to a common

purpose. It has structure expressed trough power relationships (e.g.

superior-subordinate) between constituents, and behavior/coordina-

tion mechanisms expressed through interactions between constituents.

• Role: the distinction between role and agent is analogous to that be-

tween interface and object in UML.

• Class: describes the external characteristics of an agent in a particular

context.

• Resource: is used to represent non-autonomous entities such as data-

bases or external programs used by agents. Standard object-oriented

concepts are adequate for modeling resources.

An Activity can have the following types:

• Task: is a knowledge-level unit of activity with a single prime per-

former.

• Interaction and Interaction protocol: the MESSAGE concept of In-

teraction borrows heavily form Gaia (refer to section 2.4.2). An In-

teraction by definition has more than one participant, and a purpose

The Agent-oriented Paradigm 65

which the participants collectively must aim to achieve. An Interac-

tionProtocol defines a pattern of Message exchange associated with an

Interaction.

MESSAGE assumes an architecture that separates an inference mecha-

nism from a knowledge base and a working memory. The knowledge base

contains fixed or slowly changing domain or problem-solving knowledge in a

declarative form. The working memory contains more transient sense or de-

rived information. This working memory is viewed as an abstract database

holding instances of MentalStateEntities, and its contents define the Agent’s

mental state.

Two other simple but important concepts used in MESSAGE are: a)

InformationEntity: is an object encapsulating a chunk of information; and

b) Message: the agent-oriented concept of Message differs from the object-

oriented one in a number of respects. In UML, a message is a causal link in

a chain of behavior, indicating that action performed by one object triggers

an action by another object. In MESSAGE, a message is an object com-

municated between Agents. The attributes of a message specify the sender,

receiver, a speech act (categorizing the message in terms of the intent of the

sender) and the content (an InformationEntity).

MESSAGE defines a number of views that focus on overlapping sub-sets of

entity and relationship concepts: organizational view, goal/task view, agen-

t/role view, interaction view, and domain view. The existence of different

system views is aimed at providing flexibility to the analyst, i.e. he/she can

choose an appropriate strategy, based on the combination of two or more

of these different views. A possible modeling approach starts with a top

level of decomposition, referred to as level 0, which is subsequently refined

to provide a complete understanding of the system.

AORML

The Agent-Object-Relationship (AOR) modeling approach, applying the

Agent-Object-Relationship Modeling Language (AORML) (Wagner, 2003),

is based on an ontological distinction between active and passive entities,

66 Theoretical Framework

that is, between agents and objects. The agent metaphor subsumes both

artificial and natural agents. Thus, the users of the information system are

included and also considered as agents in AOR modeling.

AOR distinguishes between agents and objects according to these two

main points: 1) while the state of an object in OO programming has no

generic structure, the state of an agent has a ‘mentalistic’ structure: it con-

sists of mental components such as beliefs and commitments. 2) while mes-

sages in object-oriented programming are coded in an application-specific

ad-hoc manner, a message in Agent-Oriented Programming is coded as a

‘speech act’ according to a standard agent communication language that is

application-independent (Labrou et al., 1999).

In AORML, an entity is either an agent, an event, an action, a claim, a

commitment, or an ordinary object. Agents and objects form, respectively,

the active and passive entities, while actions and events are the dynamic

entities of the system model. Commitments and claims establish a special

type of relationship between agents. These concepts are fundamental com-

ponents of social interaction processes and can explicitly help to achieve

coherent behavior when these processes are semi or fully automated.

Only agents can communicate, perceive, act, make commitments and sat-

isfy claims. Ordinary objects are passive entities with no such capabilities.

Besides human and artificial agents, AOR also models institutional agents.

Institutional agents are usually composed of a number of human, artificial,

or other institutional agents that act on its behalf. Organizations, such as

companies, government institutions and universities are modeled as insti-

tutional agents, allowing to model the rights and duties of their internal

agents.

There are two basic types of AOR models: external and internal models.

An external AOR model adopts the perspective of an external observer who

is looking at the (prototypical) agents and their interactions in the problem

domain under consideration. In an internal AOR model, AORML adopts

the internal (first-person) view of a particular agent to be modeled. External

models typically have a focus, that is an agent, or a group of agents, for which

The Agent-oriented Paradigm 67

we would like to develop a state and behavior model. Figure 2.9 shows the

elements of an external AOR model, in which the language notation can be

seen. � � � � �� � � � � � � � � � � � � � �� � � � � ! ! " � #$ % & # ' () $ & # � � * ' (� & + , - (. / � 0 � 1 � 2/ �3 4 � � � � � � � � ! ! #& ! (� & 5 6 % # !+ , - (
7 (� 8 7

8 � (79 � � � : � � ;< = > � 1 � � � � �3 ? � � : � � ;< = > � 1 � � � � � @ ($ (#' (7- (@ $ (# ' (7- (@ $ (# ' (7) $ & # � � * ' (� & + , - (
Figure 2.9: The core elements of AOR external models

Object types belong to one or several agents (or agent types). They define

containers for beliefs. If an object type belongs exclusively to one agent or

agent type, the corresponding rectangle is drawn inside this agent (type)

rectangle. If an object type represents beliefs that are shared among two or

more agents (or agent types), the object type rectangle is connected with

the respective agent (type) rectangles by means of an UML aggregation

connector. As can be seen in Fig. 2.9, there is a distinction between a

communicative action event (or a message) and a non-communicative action

event. Also, AOR distinguishes between action events and non-action events.

The figure shows in addition that a commitment/claim is usually followed

by the action event that fulfills that commitment (or satisfies that claim).

An external model may comprise one or more of the following diagrams:

• Agent Diagrams (ADs), depicting the agent types of the domain, cer-

tain relevant object types, and the relationship among them. An AD

is similar to a UML class diagram, but it also contains the domain’s

artificial, human and institutional agents.

• Interaction Frame Diagrams (IFDs), depicting the action event types

and commitment/claim types that determine the possible interactions

between two agent types (or instances).

68 Theoretical Framework

• Interaction Sequence Diagrams (ISDs), showing prototypical instances

of interaction processes.

• Interaction Pattern Diagrams (IPDs), focusing on general interaction

patterns expressed by means of a set of reaction rules defining an

interaction process type. Reaction rules are the chosen component by

AOR to show the agent’s reactive behavior and it can be represented

both graphically and textually.

As AUML, AORML is rather a modeling language than a methodology,

not prescribing a specific modeling process. Instead, this should be defined

case by case by the system analyst and designer.

MAS-CommonKADS

The MAS-CommonKADS methodology extends the models defined in Com-

monKADS (Schreiber et. al, 1994), adding techniques from object-oriented

methodologies (OOSE, OMT) and from protocol engineering for describing

the agent protocols (SDL, MSC96) (Iglesias et al., 1998).

The methodology starts with a conceptualization activity that regards

an informal phase for collecting the user requirements and obtaining a first

description of the system from the user’s point of view. For this purpose,

the use cases technique from OOSE is used, and the interactions of these use

cases are formalized with MSC (Message Sequence Charts). The method-

ology defines the models described below for the analysis and the design of

the system:

• Agent Model: describes the main characteristics of the agent, including

reasoning capabilities, skills (sensors/effectors), services, goals, etc.

• Task Model: identifies the tasks (goals) carried out by agents, and task

decomposition, using textual templates and diagrams.

• Expertise Model: describes the knowledge needed by the agents to

carry out the tasks.

The Agent-oriented Paradigm 69

• Coordination Model: focuses on the conversations between agents,

that is, their interactions, protocols and required capabilities.

• Organization Model: models the organization in which the multi-agent

system is going to be introduced and the organization of the agent

society.

• Communication Model: details the human-software agent interactions,

and the human factor for developing these user interfaces.

• Design Model: collects the previous models and is subdivided into

three sub models: application design: composition and decomposi-

tion of the agents of the analysis according to pragmatic criteria and

selection of the most suitable agent architecture for each agent; archi-

tecture design: designing of the relevant aspects of the agent network;

and platform design: selection of the agent development platform for

each agent architecture.

This methodology has been successfully applied in several research proj-

ects in different fields, as intelligent network management, and the develop-

ment of hybrid systems with multi-agent systems.

Comparing the Presented Methodologies

The methodologies described have different proposals for modeling an agent

and a multi-agent system. However, they do have things in common. All of

them, in a way or another, attempt to model an agent as an autonomous

entity, and also address the interaction between this agent and the others

in the agent society. Table 2.2 provides a comparative scheme among all

described approaches, presenting the concepts each of them model in each

development activity.

AUML, AORML and MessageUML are more easily adaptable in an in-

dustrial setting, since they extends UML, an already accepted standard in

industrial environments. In a sense, these approaches extend object-oriented

modeling techniques to model agents. This can be justified for a number

70 Theoretical Framework

of reasons, for example, the fact that the object-oriented programming lan-

guages have been considered a natural framework for agent’s implementation

(Iglesias et al., 1999). On the other hand, as agents and objects are not the

same thing, this can be a risky approach (Iglesias et al., 1999) (Wooldridge

and Ciancarini, 2001). From these three approaches, only MessageUML pro-

vides methodological guidelines, the others limiting themselves on providing

a modeling notation. AUML has been the choice of FIPA3, the strongest

standard body in the agent’s community. Most efforts regarding AUML

have been concentrated on expressing different kinds of coordination pro-

tocols. On the other hand, this methodology lacks support for information

modeling, and more sophisticated behavior and interaction modeling mech-

anisms. Such tools are offered in AORML, which also offers the possibility

of combining objects and agents. This seems to be very interesting, since

not all entities in a system are active, thus being more adequately mod-

eled as agents. Other than AORML and Prometheus, which mention the

combination of agents and objects, Tropos and MessageUML allows the dif-

ferentiation of passive and active entities, introducing the concept of resource

to represent the former, while agent models the latter.

Gaia is also inspired in object-oriented analysis and design (in FUSION,

to be more specific) (Wooldridge and Ciancarini, 2001). No example of

successful experience using this methodology has been advertised until this

moment. In addition to that, although Gaia claims to offer a design method-

ology, this is still a high-level design. Several steps are necessary to get the

design to the point of actually being implemented. For this detailed de-

sign, another notation (often UML) is usually needed. Extending Gaia,

ROADMAP presents some special features to model open systems, allowing

the structure of the system to change at runtime. This capability is exclusive

to ROADMAP, lacking in all other approaches here described.

Other methodologies have been developed with particular types of system

in mind. Prometheus, for instance, is particularly suitable for BDI agents,

i.e. agents are modeled based on their beliefs, desires and intentions. OperA,

on the other hand, presents a suitable approach to accommodate agents

3http://www.fipa.org

Building Blocks 71

designed by several parties. This tends to become more and more common

with the developments in the SemanticWeb (Davies et al., 2003b), which

envisions an Internet populated with agents which can be used individually

or in combination to perform a variety of functions to the user.

While ROADMAP and Prometheus claim to support requirements spec-

ification, Tropos is the methodology that more consistently supports this

activity. The first two approaches limit themselves at describing use case

scenarios, while Tropos allows the analyst to systematically go from an or-

ganizational model to the elicitation of requirements for a system to support

this organization.

Two of the presented approaches provide support to the definition of

some kind of contract between the agents, namely OperA, with its norma-

tive structure, and AORML, with the use of commitments and claims to

regulate agent’s interaction. While a dependency in Tropos define some

kind of commitment between two agents, this construct provides more lim-

ited support to contracts, as it only appoints the existence of commitments,

rather than enforcing them at design time.

The MAS-Common KADS methodology, rather than being inspired by

object-orientation, is closer to the knowledge engineering methodologies

(Iglesias et al., 1999), and introduce a bigger number of details in the sys-

tem’s modeling. Although these methodologies might be adequate for mod-

eling reasoning agents, it might add unnecessary complexity for the case of

more general applications.

2.5 Building Blocks for Constructivist

Knowledge Management

In this thesis, we claim that KM can be more effectively supported if viewed

through a Constructivist perspective. Constructivism explains how individ-

uals build knowledge in a natural and informal way. The Constructivist

paradigm is often confused with anarchism and disorder (Mahoney, 2004).

However, it is important to note that emphasizing individual autonomy and

72
T

h
e
o
re

tica
l
F
ra

m
e
w

o
rk

Methodology Development Activities

Early Requirements Late Requirements Architectural Design Detailed Design

Gaia - Roles and interac-
tions

Agents, services and
acquaintances

-

ROADMAP - Functionalities,
environment model
(zones, percepts
and actions); knowl-
edge, roles and
interactions

Agents, services and
acquaintances

Interactions in more
details

OperA - Organizational
model (roles, co-
ordination models,
norms, ontologies,
interaction scripts)

Social model
(agents, social con-
tracts), interaction
Model (agents,
interaction scenes)

-

Tropos Organizational
actors, goals,
softgoals, tasks,
resources, depen-
dencies

Organizational
actors (including
systems), goals,
softgoals, tasks,
resources, depen-
dencies

Sub-actors detailing
system architecture

Capabilities and in-
teractions modeled
with AUML

Prometheus - Actions, percepts
and functionalities

Agents and assign-
ment of function-
alities to agents,
events and messages
(interaction)

Capabilities, plans

B
u
ild

in
g

B
lo

ck
s

73

Methodology Development Activities

Early Requirements Late Requirements Architectural Design Detailed Design

AUML - - - Activities and inter-
action

Message/UML - Domain concepts,
organization, roles,
agents, resources

Roles, agents, re-
sources, tasks, inter-
action goals

Roles, agents, re-
sources, tasks, inter-
action goals

AORML - Agents, objects and
relations

Agents, objects and
relations

Interactions and in-
ternal behavior

MAS-
CommonKADS

- Functionalities,
agents, tasks,
events, interaction,
knowledge (domain,
agent, and environ-
ment), organization
model and society
of agents

Network facilities
(e.g.: yellow/white
pages, agent name
service etc.),
knowledge facilities
(e.g.: ontology
servers), coordi-
nation facilities
(e.g. coordination
protocols), agent
architecture

Selection of software
platform

Table 2.2: Comparing methodologies

74 Theoretical Framework

active participation in knowledge creation does not imply that no planning

should be required, and that knowledge inadvertently emerges. In fact, this

section is dedicated to understanding which would be the conditions for

knowledge creation, according to the presented Constructivist theories.

The KM theories presented in section 2.2.4 have been selected due to the

congruence between their principles and the Constructivist views (even if this

has mostly not been consciously noted by these KM theories’ proponents).

Here, we would like to discuss the most significant contributions of these KM

theories in light of the presented Constructivist theories (refer to section 2.3).

This discussion will grant us with the means to draw the requirements for

the development of what we will call from now on Constructivist KM.

A clear connection between the described KM theories and Construc-

tivism is given by the fact that all these theories are highly based on the

active and autonomous engagement of the knowledge holder on the process

of acquiring and sharing knowledge. Each person has a particular way of

expressing him/herself, sharing what they know, as well as seeking for new

knowledge and abilities. If individuals are restrained, they may feel uneasy

about sharing knowledge with others. While contributing to motivation,

autonomy may also lead to unexpected situations of knowledge creation and

innovation. Individuals should then be impelled to share instead of retain

knowledge. Organizations should actively create opportunities for sharing

and collaboration. But employees should also be allowed to find their own

ways to exchange knowledge while engaged at work, so as to avoid sharing to

become bureaucratic or as an obligation. In this sense, despite of the orga-

nizational power structure, knowledge exchange should be non-hierarchical,

i.e. sharing processes should not be constraint by organizational roles or

hierarchical positions. Instead, all organizational members should be rec-

ognized as possible knowledge contributors, each one being valued for their

competence and expertise in their particular fields of action.

All theories presented here value the role of social interaction to the con-

struction of knowledge, recalling the social cognitive theory of Vygotsky.

Humans are social beings, and knowledge only emerges as a result of their

interaction. In the Knowledge Spiral, social interaction is paramount for

Building Blocks 75

knowledge sharing, especially for the processes of socialization and external-

ization, which respectively lead to the communication of tacit and explicit

knowledge. Situated Learning makes direct reference to Vygotsky’s theory,

especially when exploring the benefits of apprenticeship, which leads a new-

comer to learn by collaborating with an expert, being directly engaged in

his practices. What makes CoPs so desirable for KM is exactly the types of

dynamic environment it creates on the basis of its members interaction when

involved in the community’s practices. Through these interactions, mean-

ings are negotiated and the community’s practices are themselves constantly

reshaped. Finally, DKM states that while locally managing their knowledge

assets, knowledge holders should get involved in a rich exchange of knowl-

edge, in a way that their local interpretations are dynamically negotiated.

Piaget’s theory emphasizes the importance of a perturbation in the in-

dividual’s cognitive system as the trigger for learning. This has also been

noted by Nonaka and Takeuchi, who indicate that fluctuation and creative

chaos are important characteristics of an environment that supports knowl-

edge creation. In a sense, this is also implicitly included in Paulo Freire’s

Pedagogy of Question. This theory states that a question is the initiator of

dynamic processes comprehending discussion and reflection in action, which

are relevant for the generation of innovation.

The Constructionism proposed by Papert has a lot in common with the

Knowledge Spiral, since both focus on the knowledge externalization and

internalization cycles that occur when people interact, ultimately leading to

knowledge creation and learning. In addition to that, Papert has emphasized

the importance of an external and socially meaningful artifact for knowledge

creation. This artifact is part of what Wenger calls shared repertoire, in the

context of Communities of Practice, i.e. a resource that is created as a

result of shared practice, or used in action by community members, and

which is meaningful in this social environment. Knowledge artifacts are also

important in the context of DKM, in which knowledge exchange is attributed

to the constant sharing of locally managed knowledge artifacts.

Finally, Paulo Freire argues about the need to provide contextualized envi-

ronments for the proper emergence of knowledge. In other words, he claims

76 Theoretical Framework

that learning is much more productive in environments that are connected to

the learner’s reality. In this sense, Situated Learning and knowledge sharing

in CoPs affirm the same, as they propose that people learn by being in-

volved in real practices (i.e. learning by doing), instead of acquiring a body

of abstract knowledge that can supposedly be transported and applied in

posterior situations.

Summarizing the above discussion, Fig. 2.10 presents the building blocks

for Constructivist KM, i.e. the conditions for it to emerge.

perturbation

autonomy social interaction

physical

meaningful

artifacts

context

non-hierarchical

knowledge sharing

Figure 2.10: The building blocks for Constructivist Knowledge Management

In summary, Constructivist KM claims that more attention should be

given to the knowledge holders. They should be the focus when proposing

a specific process or system to support KM. This does not mean that orga-

nizational objectives will be forgotten. Rather, organizational global goals

(or what Nonaka and Takeuchi call organizational intention) and individual

goals of the organization’s members should both be considered. Construc-

tivist theories explain the processes that lead to the emergence of knowledge.

Supporting these processes is the key to the generation of new knowledge

and innovation.

Having established this work’s philosophical basis, it is important to un-

derstand how to take Constructivist KM into practice. Constructivism has

been mentioned in connection to computer science in different ways. For ex-

ample, it has been used as a supporting theoretical framework for work on

Computer Supported Collaborative Learning (CSCL). In an innovative ap-

proach to Artificial Intelligence, Drescher (1991) has built a computational

learning and concept-building mechanism referred to as schema mechanism

Agent-oriented Constructivist KM 77

inspired in Piaget’s constructivist theory. Our work is more closely related

to the former than to the latter, as constructivism here is also seen as a theo-

retical framework to guide the development of KM practices and information

systems.

More specifically, we propose that, aiming at understanding these pro-

cesses and verifying if the conditions for Constructivist KM hold, an analysis

of the organizational setting must take place. In the analysis, several knowl-

edge holders from different levels within the organization structure should

be consulted, so that a global understanding can be built. The analysis

should be able to negotiate the global strategies of the organization and the

individual goals of the knowledge holders. As a result of the organization

analysis, an internal process may be redesigned, or a new KM system may

be developed, following the principles of Constructivist KM. In this way,

the proposed solution is prone to find less resistance in the organizational

setting, targeting some of the challenges described in section 2.2.3

2.6 Towards Agent-oriented Constructivist

Knowledge Management

In this work, we claim agents are suitable abstractions for modeling KM do-

mains and systems. Some reasons for this can be found in early section 2.4.

To be more precise, in KM settings, agents may represent not only artificial

beings, but also the human users and the organizations involved in a given

scenario. Agents’ inherent characteristics (such as autonomy, reactiveness,

proactiveness and social ability) and cognitive concepts (e.g. intentions, be-

liefs, commitments/claims) enable the explicit capture of important aspects

of the organizational setting. For instance, they allow reasoning about or-

ganizational members’ beliefs and perceptions, their interactions, and the

commitments they establish with each other on the organization’s behalf.

The understanding about these aspects help the analyst to create a clear

picture of the organizational culture, besides understanding how knowledge

flows within the organization. As a result, besides inserting new technology,

78 Theoretical Framework

the business processes applied in the organization may be changed in order

to enhance these knowledge flows. In addition to that, if a technological

solution is needed, agents enable legacy systems to be considered in the

analysis, allowing the new solution to be based on approaches of integra-

tion of old and new components. This may lead to more satisfaction to end

users, who are already familiar with the interface and methods applied in

the systems in use. This is compliant with the idea of Constructivist KM,

which emphasizes the need to provide more attention to knowledge holders,

while at the same time, trying to consider organizational general goals and

strategies when proposing a KM solution.

Agents are specially powerful to assist in the capture and reasoning of the

identified Constructivist KM principles. For example, as explained in sec-

tion 2.4.1, autonomy and social ability are inherent characteristics of agents.

By exploring them, we are able to identify how much autonomy is granted

to the agents of a KM setting, and how well they collaborate and interact

(refer to social interaction building block). Examining the structure of the

agent society, understanding the relations between its populating agents,

gives us the possibility to grasp if knowledge flows in a hierarchic way or not

within this society (verifying the compliance to the non-hierarchic knowledge

sharing building block). While pursuing their goals, agents apply informa-

tion resources. These passive system entities are captured by constructs

of most of the described engineering approaches, being modeled as objects,

resources or permitted information items. The analysis of the information

resources created, maintained and exchanged between agents enables the

identification of the physical meaningful artifacts that mediates knowledge

creation and sharing. Finally, by focusing on the characteristics of the envi-

ronment where agents inhabit, we are able to analyze whether or not such

environment provides context for knowledge sharing, and to which extent

constructive perturbations are explored.

The lack of a systematic agent-oriented methodology has been mentioned

as one of the biggest obstacles for the large-scale adoption of the agent

paradigm Jennings et al. (1998) Parunak (2000). Although much work tar-

geted this topic in the past few years, there is still room for debate in the

Agent-oriented Constructivist KM 79

area. Nevertheless, it seems that this discussion has reached a point of ma-

turity. If before the focus was the proposal of different modeling abstractions

and methods, today the attention has shifted to comparing methodologies

in order to understand for which application types each approach is more

suitable (Juan et al., 2004) (Dam and Winikoff, 2003) (Sabas et al., 2002) or

for combining different approaches (Henderson-Sellers, 2005) (Bernon et al.,

2004) (Juan et al., 2003) in order to maximize their advantages and minimize

their drawbacks. Perhaps, at some point, this debate will culminate with the

proposal of a standard approach, following the paths of the object-oriented

community that has proposed UML as a standard for object-oriented anal-

ysis and design.

This is also the approach taken in this thesis. Our objective is to com-

bine existing work on agent-oriented software engineering to tailor a suitable

methodology for Constructivist KM settings. In our view, important char-

acteristics of an adequate methodology are the following:

• supporting crucial engineering activities, allowing the developer to first

understand the analyzed environment and its inherent problems, and

then consistently lead the developer to the design of the solution;

• offering a suitable set of concepts and constructs for the targeted sys-

tem development activity;

• providing a visual language besides textual descriptions, thus facilitat-

ing the communication between stakeholders and analysts, and among

analysts and system designers;

• being relatively accessible and not requiring too much overhead in the

sense of extra work from the part of the analyst in understanding and

using the given language and method.

The first item above regards the particular development activities and

life cycle supported by the methodology. To guarantee that a clear under-

standing is achieved before a solution is proposed, our methodology should

start with a detailed analysis of the domain, leading to the elicitation of

80 Theoretical Framework

system and/or process requirements. And then, in case an information sys-

tem is proposed, the methodology should cover architectural and detailed

design activities, enabling the designer to achieve the final stages of system

implementation.

With respect to the second issue above, it is important to find, among

the existing approaches, the ones that support all entities of the domain,

namely organizations, organizational members, communities, systems, and

other resources. Besides, the applied notation should be able to system-

atically represent relations between these entities, model their interactions,

and design their internal behavior. In addition to that, we should focus on

the right choice of agent mentalistic characteristics to be applied in the dif-

ferent activities of the development cycle. Concepts such as agent’s beliefs,

goals, commitments and plans are vastly discussed in literature and differ-

ent models have been proposed (Rao and Georgeff, 1991) (Wooldridge and

Ciancarini, 2001). However, it is hard to know how to effectively consider

these concepts while analyzing a domain and designing a system. Particu-

larly, it is difficult to materialize these constructs as concrete elements of an

information system.

The discussion about adequate concepts, models, and life cycles is re-

sumed in the next chapter, where we propose and describe our methodology.

We specifically explore the combination of two agent-oriented approaches,

complying with the third and forth items above. The resulting notation pro-

vides the user with a comprehensive set of diagrams and analysis methods

that are visually rich, thus facilitating reasoning and communication about

the created models. Furthermore, the two combined approaches are well-

known in the agent-oriented community. This makes the effort of analysts

and designers adopting our methodology much diminished, in comparison

with cases in which a total new set of concepts, constructs and methods are

adopted and need to be learned from scratch.

Chapter 3

The ARknowD Methodology

“Our brains are essentially

model-making machines.”

Vilayanur S. Ramachandran

Having seen in the previous chapter, what are the characteristics of a

KM environment and what are their most pressing needs, the next step is

proposing an approach that taking such characteristics into account, attend

the main highlighted needs. For this purpose, we introduce a methodology

we name Agent-oriented Recipe for Knowledge Management System Devel-

opment (ARKnowD). ARKnowD is aimed at analyzing the current state of

an organization, trying to identify the previously defined Constructivist KM

building blocks. As we have seen, the degree to which the organizational

setting meets these building blocks directly conditions KM support. We

believe that Constructivist KM especially leads to a higher degree of ac-

ceptance level of organizational members towards information systems and

practices adopted by the organization.

In this chapter, we start by introducing the main assumptions underlying

ARKnowD (chapter 3.1), one of which is the applicability of existing agent-

oriented methodologies that in combination, may meet the demands of our

approach. Then, we describe in depth the scenarios of applicability of our

methodology (3.2) and its underlying activities and life cycle (3.3). Next,

we discuss existing work using agent’s cognitive concepts (3.4) and based on

81

82 The ARknowD Methodology

such concepts, develop an ontology comprehending all ARKnowD’s modeling

constructs (3.5). This ontology is then used as a reference model to guide the

evaluation of the two notations applied in ARKnowD, making the necessary

adjustment to facilitate their merge into one language (3.6). Moreover, in

order to combine these two existing agent-oriented approaches, we provide

an MDA-inspired transformation method, described in detail in section 3.7.

Following, section 3.8 focuses on a working example that serves as a context

for some important methodological guidelines that should aid the analyst

and designer to undertake the task of building an organizational model using

ARKnowD. Next, we provide a discussion on automated support (3.9) which

is succeeded by the description of a few approaches having affinity with ours

(3.10). Section 3.11 finally concludes this chapter.

3.1 Introduction

As discussed in the previous chapter, KM has lately become the focus of

much attention and great investments within organization settings. This

stems from a general realization that the biggest assets owned by businesses

and corporations lie within the minds of the people who constitute them, or

work on their behalf. As a consequence, knowledge is usually embedded in

the organization’s routines and products. The understanding of how knowl-

edge flows within an organization is paramount for supporting KM. This

understanding enables knowledge to be elicited, besides providing insights

on how to support KM in a specific organizational scenario.

As argued in section 2.6, agents are suitable entities to model human

and artificial organizations due to their autonomous, reactive and proactive

nature, besides other cognitive characteristics. This can support domain

analysts and system designers in understanding the current organizational

setting before proposing the development or adoption of particular solutions.

However, having an appropriate abstraction is not enough for guaranteeing

the development of adequate solutions for the organization. For that, a

consistent engineering methodology is needed to transform these abstract

Introduction 83

notions in useful tools to enable problem solving in real scenarios.

In this thesis, we propose a methodology named Agent-oriented Recipe

for Knowledge Management System Development (ARKnowD), preliminar-

ily introduced in (Guizzardi et al., 2005). ARKnowD is an integrated agent-

oriented methodology to develop KM solutions, which represents as agents

all humans, organizations and information systems of the domain. This

enables the analyst to understand their relations and interactions, guiding

him/her on finding appropriate solutions to target the idiosyncrasies of that

particular environment. Note that our conceptualization of ‘system’ is gen-

eral, including but not being restricted to that of information system. In

this work, system is defined as a general set of interacting entities (Bunge,

1979), thus comprehending artificial and non-artificial entities (such as hu-

mans, organizations and organizational units). This opens the possibility to

consider several outcomes resulting from the application of our methodol-

ogy, such as: changing organizational structures, modifying processes, and

adopting technological or non-technological tools.

Benefits as a result of the application of ARKnowD may be attributed to

our choice of using the proper agent cognitive characteristics in the different

development activities. Concepts such as agent’s beliefs, goals, and plans

are vastly discussed in literature and different models have been proposed.

However, there is a gap between knowing their definition and actually ap-

plying them effectively in practice. In this respect, our work attempts to

provide an answer to the following questions: Should these concepts be con-

sidered all at once in system development? If not, when are goals suitable,

and when should the developer start considering agent’s beliefs, for example?

And, perhaps, the most frequent question of all: How can these concepts

be materialized in practical elements of an information system? Although

there is no final answer for such questions, we aim at contributing to clarify

these important issues.

Another strong characteristic of ARKnowD is the adoption of visual mod-

eling for supporting requirements analysis and design. A model here can be

defined as an abstraction of the reality. It usually focuses on a particular per-

spective and thus, on specific concepts that are important for a given model-

84 The ARknowD Methodology

ing activity. Visual modeling supports reasoning both about the domain and

the proposed solution. More specifically, visual models provide analysts and

designers with means for visualizing, specifying and communicating about

elements of the domain and the solution. Besides, visual modeling allows

groups of developers to work in physically disperse environments, aiding the

integration of the different components of an information system, developed

with basis on models made with the same notation. Finally, communication

with the stakeholders is also facilitated by the use of visual models. In this

sense, we emphasize the appropriateness of agent-oriented concepts, such as

goals, plans, beliefs and commitments. These concepts are much closer to

the reality of common stakeholders than technology-oriented terminology,

such as tables, SQL query, middleware and threads.

Given the current stage of research on the agent-oriented paradigm, and

the vast availability of methods and languages for agent-oriented analysis

and design, the methodology presented here is built over existing work. One

of the principles of our methodology is granting analysts and designers with

freedom to select the appropriate tools from a vast ‘library’ of methods and

languages, depending on the specific case at hand. It is our belief that not

one method possesses all the right properties. Instead, these properties can

often be attained by combining different approaches. This view is compliant

with the method engineering approach adopted in the OPEN metamodel

(Henderson-Sellers, 2005), which prescribes the reuse of fragments of differ-

ent agent-oriented methods according to a given situation. Figure 3.1 illus-

trates different possibilities of combining existing agent-oriented languages

and methodologies, already described in section 2.4.2.

Fig. 3.1 depicts several options one could select when developing a sys-

tem. For instance, analysts that are familiar with the Gaia methodology

(Wooldridge et al., 2000) could start with the definition of roles and inter-

actions and, then, refine these models respectively into OperA’s roles and

scenes (Dignum, 2004a) (path 1). This would result in a more detailed and

formalized analysis model. Another possibility is given by the combination

of Tropos (Bresciani et al., 2004) and OperA (path 2). As viewed in table

2.2, Tropos is the approach that gives more attention to the requirements

Introduction 85

Gaia
OperA

Tropos

AORML

roles

interactions

roles

scenes

1

c
o
o
rd
in
a
tio
n

m
o
d
e
ls

3Actors, goals,

dependencies... 3

Agents, object,

relations,

commitments

2

2

1

2

3

3

4

4

ROADMAP

roles and

zones

interactions

5

5

Interactions,

internal behavior

Figure 3.1: Combining different agent-oriented approaches

analysis activity, which can be highly beneficial for KM settings. Combin-

ing Tropos and OperA allows the analyst to take advantage of Tropos’s

requirements analysis propensity at the same time as generating a formal-

ized analysis model. However, if a formalized model is not necessary, Tropos

can be combined with AORML (Wagner, 2003) (paths 3 and 4), generating

a methodology that covers all activities of system development, coming from

early requirements analysis to detailed system design (this last activity is not

covered by OperA). Following path 3, the analyst still applies one of OperA’s

resources, namely the coordination models, to guide them on the creation of

a suitable system architecture (Dignum, 2004a), before using AORML for

detailed design. Path 4 is indicated for cases where the designer uses his

previous experience for generating the solution’s architecture, so AORML

can be applied directly after Tropos. Finally, in path 5, ROADMAP (Juan

et al., 2002) and AORML are combined. ROADMAP is specifically tai-

lored to enable the development of open systems. This methodology usually

applies AUML (Odell et al., 2000) for detailed design. Here, however, we

suggest AORML as an alternative design language.

In this work, we explore the possibility given by path 4, i.e. the combina-

86 The ARknowD Methodology

tion of Tropos and AORML. Both approaches use the notion of agent and

related cognitive concepts in all software development activities, from early

requirements analysis down to the actual implementation. However, as an

extension of UML, AORML is rather a modeling language than a method-

ology, though some methodological directions on how to use AORML for

software development have already been identified in (Wagner, 2003).

Another difference is given by the different strength of each of the ap-

proaches for the different system development activities. Tropos gives a

crucial role to the early requirements analysis activity that precedes the pre-

scriptive requirements specification of the system-to-be. Although AORML

has been proposed for domain modeling (Guizzardi et al., 2004a), it does not

provide specific diagrams for requirement’s specification. Even if traditional

UML use cases diagram may be applied, the Tropos’s notation is much more

rich and appropriate for agent-oriented modeling. On the other hand, con-

trarily to AORML, Tropos does not cover detailed design, adopting AUML

for supporting this activity.

The adoption of AUML has its drawbacks. For instance, AUML does not

provide a rich model of the domain and system entities such as AORML

(information modeling). Using the AOR agent diagram, the designer is able

to represent all agents and objects considered in the domain, along with

their properties. In AUML, information modeling does not receive much

attention, and traditional class diagrams are often used, although they are

not made for agent-oriented modeling. The result is that only agents are

allowed (no objects are considered), or else the same construct is used to

represent both agents and objects. The latter leads to construct overload,

which may seriously undermine the understanding of the resulting models

(Guizzardi, 2005). Another advantage of using AORML is the availability of

three different diagrams of modeling interactions, compared to one offered by

AUML. This includes the AOR Interaction Pattern Diagram, which models

the internal reactive behavior of an agent while interacting with others.

The differences between Tropos and AORML suggest that these two

approaches can be rather complementary than competing. The concepts

adopted in Tropos can be consistently mapped to AORML constructs, al-

Scenarios of Applicability 87

lowing them to be carried out farther from the requirement analysis to the

design activity. Section 3.7 presents more details on the transformation

between these two notations.

We believe the combination Tropos/AORML is profitable in both di-

rections. Specifically in respect to organizational or KM Systems model-

ing, Tropos may benefit from the following strengths of AORML: 1) the

fact that ‘mentalistic’ (or cognitive) concepts of agents, such as beliefs and

commitments, are explicitly considered in system design supports the an-

alyst/designer to reason about and to model the behavior of agents, both

internally and in interaction with other agents of the system; 2) although

norms and contracts are not directly supported by AORML, it provides de-

ontic modeling constructs such as commitments and claims, which form the

basis for the establishment of such norms and contracts; 3) it captures the

behavior of agents with the help of rules. Besides these strengths, since

AORML is an extension of UML, preserving its principles and concepts, it

is an accessible language, and it allows the use of UML constructs whenever

an extension is not provided, thus providing a comprehensive set of tools

for the analyst/designer. On the other hand, the explicit use of Tropos’s

goals and plans provide a rich conceptual framework for modeling the in-

tentional dimension of the organization. This includes a preliminary view of

how user’s interact, without however adding unnecessary protocol details in

the early stages of requirements analysis. Such concepts of goals and plans

are missing in AORML.

3.2 Scenarios of Applicability

We envision three possible application scenarios for ARKnowD, illustrated

in Figure 3.2.

a) Proposing changes in the organizational structure to accommodate/en-

hance KM practices.

b) Modifying business processes to accommodate/enhance KM practices.

88 The ARknowD Methodology

(A)
 (B)
 (C)

Figure 3.2: Three application scenarios for ARKnowD

c) Adopting an enabling tool, technological or not, to support KM. In

case an information system is needed, there are three possibilities:

• Developing a KM System based on legacy systems currently in

use.

• Developing a KM System from scratch.

• Adapting an existing KM System (out of the shelve) in a cur-

rent business process, making the necessary processual changes

accordingly.

Technology has been cited as only one part of the solution to enable KM

(Orlikowski, 1992b). At times, enhancing the knowledge flow within the

organization does not require the adoption of any new tool, but rather mod-

ifying the structure and the business processes underlying the organization.

Organizational reengineering has often been mentioned as a solution to

create more conducive environments for knowledge sharing (Orlikowski et al.,

1995) (Wiig, 1994). This can be achieved by creating or extinguishing or-

ganizational units or departments. As an interesting example, we cite the

case of the Dutch insurance company Achmea reported in (Dignum and van

Eeden, 2003), which created a new division (the KM division) to propose

projects and take care of all matters related to KM. Other cases include

periodic rotation of personnel, which may enhance the flow of knowledge

from one department to the other. New knowledge sharing opportunities

and synergy accrue from such personnel rotation, as recognized by Nonaka

Scenarios of Applicability 89

and Takeuchi (1995) and Perini et al. (2004).

Several are the cases reporting KM enhancements that emerge as a result

of changes in process. Nonaka and Takeuchi (1995) report a case of this sort,

involving a team of technicians from Matsushita that were involved in the

construction of the first fully automatic electronic bread-making machine

for home use, released in 1987. After a few frustrating experiences, espe-

cially to automate the process of kneading the dough, Matsushita achieved

encouraging results after an internship that a senior developer made with a

baker. In observing and participating in the activities of making bread, he

realized the right way a dough should be worked on, posteriorly embedding

a mechanism in the machine that imitated the movements of the baker. In

this case, no new department was created and no new tool was adopted.

Instead, the routine of an employee (the software developer) was radically

changed, enabling him to capture tacit knowledge embedded in the practices

of a specialist, much as advocated by Lave et al. (1991) (refer to section 2.2.4

for a full discussion on this).

An effective knowledge flow requires the right set of tools or instruments.

These tools can be based on information technology or not. In some situa-

tions, a simple flip-chart may be required to register new ideas in a brain-

storming session, allowing the exploration of analogies and metaphors, advo-

cated as drivers for tacit knowledge sharing (Nonaka and Takeuchi, 1995).

For other purposes, information systems as the ones described in section

2.2.2 may be needed to enable and enhance the capture, structuring and

dissemination of knowledge throughout the organization. Finally, a combi-

nation of physical tools and information systems’ capabilities may result in

the creation of novel supporting instruments, following the trend of ubiqui-

tous computing (Weiser, 1994).

ARKnowD supports three distinct situations regarding the adoption of

information systems. The system may be developed from scratch. For that,

ARKnowD analyzes how the new system fits in relation to the members of

the organization, and how it changes the current processes. Following, the

inner-structure of the system is detailed and developed. However, organi-

zations normally have some legacy system in place that although obsolete,

90 The ARknowD Methodology

offer a few functionalities that are essential to the organization. Agents have

been cited as especially suited for enabling development of new systems by

integrating legacy systems (Jennings et al., 1998) (Wooldridge, 2002). In

this case, ARKnowD includes legacy systems as agents in the analysis of the

organizational settings. The interaction of these systems with the human

agents of the organization is detailed and finally, new functionalities may be

proposed. This can be done either by wrapper-agents that add new levels of

functionality over the legacy systems (Wooldridge, 2002), or by new agents

that simply interact with them as well as with human agents. Finally, there

is a third possibility of information system adoption. This refers to the case

when an organization wants to adopt a specific system that is already a

finished product. This is more common than one might imagine, as a result

of hype or market pressure regarding a specific kind of technology. Here,

ARKnowD supports the insertion of the new information system within the

organizational setting, by fitting it into organizational processes, making

eventual necessary adjustments to better integrate the new solutions within

organizational practices.

3.3 Activities and Lifecycle

The proposed methodology comprehends the following activities:

1. Requirements elicitation. Requirements elicitation is a basic activity

of all software engineering processes. Before starting to build a new infor-

mation system, it is necessary to grasp what stakeholders (i.e. future users

of the systems and other influenced parties) really need. This is exactly

the main aim of Requirements elicitation (Nuseibeh and Easterbrook, 2000)

(Goguen and Linde, 1993). In ARknowD, however, this activity takes a

more general notion, since the organization may not need a new information

system, but solely a structural or process change. Thus, requirements here

refer to any need for change in terms of organizational structure, process

and tools, reflecting the scenarios described in section 3.2.

In any case, one thing is certain: the way people work within an organiza-

Activities and Lifecycle 91

tion is bound to change. These changes may bring about positive outcomes

in respect of knowledge sharing. Changes generate perturbations in the or-

ganizational environment, which as claimed by Constructivist KM, naturally

lead to learning and performance enhancement (for an in depth discussion

about this topic, refer to the previous chapter, sections 2.2.4, 2.3.1 and 2.5).

However, there is no point in making unecessary changes, or even hamper-

ing current best practices within the organization. Thus the importance of

gathering the right set of requirements before jumping into the development

of a new solution.

As the term elicitation suggests, requirements are not simply out there,

waiting to be collected (Nuseibeh and Easterbrook, 2000). The activity of

requirements elicitation is, thus, ill-structured and complex. Several tech-

niques have been propose to support this activity, as described in (Goguen

and Linde, 1993) and (Nuseibeh and Easterbrook, 2000). Traditional tech-

niques rely on individually answered questionnaires or interviews, while oth-

ers propose special activities to be performed with groups of stakeholders.

Ethnographic techniques have recently gained attention in recognition for

the complexity of requirements elicitation. Ethnomethodology usually re-

quires that the analyst is immersed in the organizational setting, performing

active observation and trying to understand this setting from the perspec-

tive of a real member of the organization. ARKnowD does not prescribe

any specific technique for requirement elicitation. However, our work rec-

ognizes that observation of people in action, as proposed by ethnographic

techniques, should be combined with interviews and questionnaires, leading

to more consistent requirements.

2. Requirements analysis. Requirements analysis refers to the activity of

modeling and reasoning about organizational requirements. Our methodol-

ogy models requirements as goals. This view has been largely acknowledged

by the Requirements Engineering community. Note, for instance, that Zave

cited by (Nuseibeh and Easterbrook, 2000) defines Requirements Engineer-

ing as “the branch of software engineering concerned with real-world goals for

functions of, and constraints on software systems”. This definition empha-

sizes the importance of viewing the stakeholders’ real goals as motivators

92 The ARknowD Methodology

for choosing a particular solution over another. For a discussion on RE

methodologies that apply goal analysis, refer to (Kavakli and Loucopoulos,

2005).

The adoption of goals is also compliant with KM theories. According

to the Knowledge Management Spiral (Nonaka and Takeuchi, 1995) (see

section 2.2.4), for example, one of the main drivers of knowledge creation

is the organization’s intention, defined as “an organization’s aspiration to

its goals”. Nevertheless, these authors mainly focus on the organization

top management’s intention for facilitating KM initiatives. In contrast, we

consider the goals of all stakeholders, trying to understand the relations and

possible discrepancies between their goals. This view is aimed at providing

autonomy in knowledge sharing, as prescribed by Constructivist KM, and

also emphasized by Dignum (2004a).

ARKnowD particularly supports the analysis regarding the extent of the

analyzed setting’s compliance to the Constructivist KM building blocks ear-

lier defined in section 2.5. In other words, the methodology’s supported

concepts and techniques allow the analyst to understand:

• how much autonomy is given to each organizational member to share

knowledge the way he/she sees fit;

• if the creation and sharing of knowledge happens in a bureaucratic

way, obeying hierarchical structures within the organization of if it is

rather non-hierarchical and natural, motivating each one to contribute

with his/her share of knowledge despite organizational position or ex-

perience;

• how well organizational processes favor social interaction, considered

here as an essential ingredient for the disambiguation of tacit knowl-

edge, and thus for the generation of innovation;

• what kind of meaningful artifacts are exchanged among organizational

members, cross-cutting divisions and communities and in this way,

carrying knowledge throughout the organization;

Activities and Lifecycle 93

• how constructive perturbations are generated and coped with within

the organization, triggering the dynamics that motivate employees to

constantly self-improve;

• what kind of contexts emerge or are actively planned by the organiza-

tion for knowledge creation, integration and sharing.

We claim that the presence of the highlighted characteristics within the

organization’s environment lead to more effective support to KM. Thus, a

deeper understanding of how much the analyzed setting complies with these

principles gives the analyst the means to assess how well the organization

currently supports KM. Consequently, such principles may be used as guid-

ances, serving as a kind of checklist for the domain analyst. Understanding

the presence or absense of such principles allows limitations in the organi-

zation’s environment to be corrected and appropriate KM solutions to be

proposed.

Borrowing Tropos’s approach, requirements analysis is divided in two sub-

activities, namely early requirements and late requirements analysis (Bres-

ciani et al., 2004). In early requirements analysis, modeling focuses on un-

derstanding the organization’s and stakeholders’ goals as they carry out their

work and responsibilities. This activity culminates with an understanding

of the rationale behind stakeholders’ needs of a specific solution (in terms of

tools, changes in the organizational structure, or process changes). Finally,

in late requirements, we focus on the requirements for the solution, being

able to trace them back to the fulfillment of the social and individual goals

previously analyzed.

3. Design. The design activity is responsible for providing the solution

in as much detail as to enable it to be developed in practice. At design

time, we should be able to identify all agents that take part in the structure

of the solution, as well as their relations. Moreover, processes are fully

modeled, making clear the interactions among agents, besides their external

and internal behaviors that should also be explicitated.

In the case of the development of an information system, the design can

be viewed as two distinct sub-activities: architectural design and detailed

94 The ARknowD Methodology

design. As the name suggests, architectural design is concerned with the

architecture of the system under development. At this point, all agents of

the system should be identified, along with their individual goals. In ad-

dition, the resources and plans used by the agents to achieve their goals

are modeled. Note that the transformation between Tropos and AORML

happens exactly at this point. Finally, in the detailed design, the informa-

tion structure of the system is detailed, along with processes and agent’s

behavior. The final result of detailed design should be a system model that

can be implemented using a programming language and/or framework. AR-

KnowD does not commit to a specific programming infrastructure. Chapter

6 exemplifies the detailed design of a system implemented using the JADE

framework (Java Agent DEvelopment Framework) 1.

Figure 3.3 illustrates ARKnowD’s life cycle, summarizing our discussion

on the supported activities.

Requirements

Elicitation

Early

Requirements

Analysis

Late

Requirements

Analysis

Design

Solution Design:
 solution is

described in details. For

information systems:

Architectural Design

Detailed Design

Analysis of the Current

Organizational Setting:

human agents goals and

responsibilities

Interaction with

stakeholders:

interviews

ethnographical methods

Analysis of the Solution

Requirements:
 new agents,

goals are delegated and

analyzed

Figure 3.3: ARKnowD’s lifecycle

Note that this chain of activities may be performed several times, in an

iterative process. The development of a solution commonly requires several

1http://jade.tilab.com/

Activities and Lifecycle 95

cycles, each one performing some or all activities to a certain extent. The

first cycles are characterized by the focus on the clarification, negotiation

and agreement of requirements, thus requirements elicitation and analysis

are iterated several times. Then, the focus slowly shifts to the development

of the solution, although each design cycle may still require the elicitation

and further analysis of new requirements. To clarify this point, we borrow

from the Rational Unifying Process (RUP) the concept of phases (Kruchten,

2000). RUP divides the development process in four phases, defined as

follows:

• Inception: targets the specification of the vision of the solution and its

business case, as well as the definition of the scope of the project.

• Elaboration: focuses on planning the necessary activities and required

resources, besides specifying and designing the architecture.

• Construction: aims at building the solution and evolving the vision,

the architecture, and the plans made in the previous phase until the

solution is ready for delivery to the targeted community.

• Transition: concerns the adjustment of the solution to the stakehold-

ers. In case the solution is non-technological, it usually involves train-

ing and monitoring the stakeholders within their new division, or per-

forming new working processes If an information system is part of the

solution, besides training and monitoring, it also involves deploying,

supporting and maintaining the system.

Organizational top and/or middle managers are usually responsible for

the project’s vision (Nonaka and Takeuchi, 1995), elaborated during incep-

tion. However, Constructivist KM emphasizes the importance of involving

all organizational members in this debate as much as possible. Inception

is also a time for advertising the project’s vision, gaining support from the

stakeholders, especially those individuals that are going to be involved in

the activities of requirements elicitation. In fact, this phase may even indi-

cate who are the best candidates to be included in the elaboration plans for

future observation or interviews.

96 The ARknowD Methodology

During transition, the applied solution should be assessed, and minor

problems should be corrected. Assessment typically takes a long period, as

the results of early and late employments of new processes and tools may

be very different (Orlikowski, 1992a). Meanwhile, organizational require-

ments are liable to change, and the solution may need to be consequently

updated. This initiates another phase of inception, triggering new iterations

of ARKnowD’s main activities. Note that, in this case, information sys-

tems and new organization divisions are now included as new agents in the

requirements analysis phase.

3.4 The Use of Agent Mentalistic Concepts

As stated in section 2.4, an AI perspective of agents characterize it by its

cognitive (or mentalistic) properties, such as beliefs, goals and commitments.

Although a software engineering view on agents emphasize its potential for

information system development, without too much care for mentalistic or

cognitive notions, we here argue that such properties may indeed favor both

domain and system analysis and design. This is especially motivated by

the fact that we apply agents as metaphors to model members of organiza-

tions. Thus, it may be interesting to consider these properties to explicitate

particularities of human relations, along with their interaction with infor-

mation systems. In this sense, notions such as goals, plans and dependency

adopted by Tropos, along with belief, perception and commitment supported

by AORML made these notations particularly attractive for modeling our

view of human organizations. Particularly for Constructivist KM support,

these cognitive notions assist the analyst in the task of capturing the pe-

culiarities of the organization’s environment and culture. Understanding

agent’s goals, perceptions and beliefs lead to a deeper comprehension of the

values and strategies adopted in the organization, thus contributing for the

conception of more suitable practices and information systems to enable

Constructivist KM.

Several agent cognitive models are proposed in AI literature, the most

The Use of Agent Mentalistic Concepts 97

well-known of them being the BDI model (Rao and Georgeff, 1991). This

approach models agents by focusing on the three basic mental components

of belief, desire and intention. Belief refers to knowledge the agent has about

the environment and about the other agents with whom he/she interacts.

Desire refers to the particular “will” of the agent towards a specific state

of affairs of the world (goal), although he/she might never actually pursue

these goals. And finally, intention leads to specific plans and commitments to

achieve specific goals. Among the practical use of such framework, Rao and

Georgeff (1991) present a possible-words formalism for BDI-architectures,

while the InteRRaP architecture proposed by Fischer et al. (1996) takes a

less formal view of this model, realizing it through a set of three layers that

aim at explaining agent behavior and supporting system design.

A different model characterizes the state of an agent as a combination

of mental components such as beliefs, capabilities, choices, and commit-

ments (Shoham, 1993). However, according to (Wagner, 2003), both this

and the BDI model fail to recognize two fundamental elements for the de-

sign of agent-oriented information systems: perceptions of environmental

events and messages of other agents, which form the basis for the agent’s

reactive behavior; and memory of past events and actions.

Notions such as beliefs, goals and commitments have been largely used

to model multiagents’ cooperation and teamwork (Pynadath et al., 1999).

For instance, CAST (Yen et al., 2001) has been developed to simulate and

support teamwork within mixed human/agent teams. The petri-net based

formalism applied in CAST enables it to represent besides belief about the

world, also belief about the current goals and activities of others in the

team. In addition to that, CAST generates representation of roles and

responsibilities, along with individual and team plans. Based on the shared

mental model, CAST agents are able to decide on the fly how to accomplish

desired goals, how to select responsibilities to commit to or delegate, how to

proactively assist others in the team, and how to effectively communicate

within the team.

CAST applies a knowledge representation language called MALLET (a

Multi-Agent Logic-based Language for Encoding Teamwork), which models

98 The ARknowD Methodology

beliefs, roles, responsibilities, and capabilities (Yin et al., 2000). Further-

more, Mallet considers both plans and goals, having plans being decomposed

to fulfill agent goals. Other work on cooperation that deal with goals and

plans, linking them to the notions of beliefs, desires and intention include

(Boella et al., 1999).

Currently, research in this area has shifted its focus from the individ-

ual characteristics of an agent to a view of multiagent systems as orga-

nized bodies. In this sense, coordination and control should be addressed

as organization-centric instead of agent-centric, as earlier (Sichman et al.,

2005). This has given life to a new research area known as Agent Organiza-

tions. Research in this area is much in line with our aim at modeling human

organizations, our work being particularly focused on the application area

of KM. Thus, within the work on agent organizations, we are particularly

interested in the proposed modeling frameworks.

Several such frameworks have been proposed. Among them, we have al-

ready mentioned OperA (Dignum, 2004a), which besides being a software

engineering methodology, has been specifically tailored for modeling agent

organizations. As described in section 2.4.2, the organizational model pro-

posed by OperA views an organization as a set or roles that abstractly de-

scribe the functional position agents will later occupy. Besides, this model:

a) defines the coordination structure followed by the organization (such as hi-

erarchy, market or network); b) models interaction moments through scenes ’

description; and c) prescribes norms, associated to roles and interactions.

Besides OperA, AGR (Ferber et al., 2004), MOISE+ (Hubner et al., 2002)

and ISLANDER (Esteva et al., 2002) are among the most prominent exam-

ples of agent organizations frameworks. AGR focuses on a structural view

of the organization, modeling it as a set of agents, roles and groups. Agents

are active, communicating entities playing (multiple) roles within (several)

groups. Besides a structural view similar to that of AGR, MOISE+ also

presents functional and deontic aspects. On one hand, functional aspects

concern organizational goals, which are decomposed in plans and assigned to

agents through missions. On the other hand, deontic aspects describe roles’

permissions and obligations concerning missions. In MOISE+, roles may be

Agent Ontology 99

related by communication and authority links. In ISLANDER, the organi-

zation’s roles and their relationships are presented in the dialogic framework,

which also prescribes a common ontology that guides agent’s communica-

tion and knowledge exchange. Interactions in ISLANDER are modeled as

scenes, which are then related through performative structures. And finally,

ISLANDER also models norms through the definition of commitments, obli-

gations and rights of participating agents.

It is worth mentioning that much work related to philosophy and cogni-

tive sciences have supported the definition of the cognitive notions mentioned

here, guiding its practical use for modeling and developing multiagent sys-

tems. Among these is the early work of Bratman (1987) on goals, beliefs,

intentions and related mental models, and the contribution of Castelfranchi

and colleagues on commitments (Castelfranchi, 1995), dependency (Castel-

franchi et al., 1992), and delegation (Castelfranchi and Falcone, 1998). In

addition to these, work on conceptual formalization through the use of on-

tologies have also provided valuable contribution in this respect (Guizzardi,

2005) (Bottazzi and Ferrario, 2005).

Because the definition and treatment of such cognitive concepts are differ-

ent in each work, we found important to provide our own conceptualization.

Hence, in the sequence, we present an ontology of agent and related con-

cepts. In this work, we try to merge the different existing views, sometimes

combining them, sometimes compromising one idea in favor of another. It

is important to add that here, we particularly apply this ontology for guid-

ing the understanding and the evaluation of the notations adopted by AR-

KnowD (i.e. those of Tropos and AORML). Furthermore, we aim with such

initiative, to give a step forward in the direction of clarifying agent-related

concepts, thus contributing to the state of the art in the area.

100 The ARknowD Methodology

3.5 Towards an Ontology for the Domain of

Agents

An ontology can be defined as a specification of a representational vocabu-

lary for a shared domain of discourse (Guizzardi, 2005). In other words, an

ontology is a domain model, composed of a set of concepts and relations. An

ontology is useful to provide a clear understanding about a certain domain.

Its concepts and relations provide the precise meaning of the domain’s con-

cept. Here, an ontology is applied to clarify ARKnowD’s concepts, inherited

both from Tropos and AORML.

We base our Agent Ontology on the foundation ontology previously de-

fined by Guizzardi and Wagner (2005). According to these authors, a foun-

dation ontology, or upper level ontology “defines a range of top-level domain-

independent ontological categories, which form a general foundation for more

elaborated domain-specific ontologies” (Guizzardi and Wagner, 2005, pg.

346). These foundation ontology is divided into three incrementally lay-

ered compliance sets: 1) UFO-A defines the core of UFO, excluding terms

related to perdurants (i.e. processes) and terms related to the spheres of

intentional and social things; 2) UFO-B defines, as an increment to UFO-A,

terms related to perdurants; and 3) UFO-C defines, as an increment to UFO-

B, terms related to the spheres of intentional and social things. This section

briefly describes UFO-A and UFO-B, focusing only on the concepts that are

important for the complete understanding of our ontology. Following, we

present UFO-C in detail, extending it to create our ontology.

3.5.1 UFO-A: Endurants and Perdurants

Figure 3.4 shows an excerpt of UFO-A. UFO-A distinguishes between two

kinds of individuals: endurants and perdurants. This distinction can

be intuitively understood in terms of the distinction between ”objects” and

”processes”, respectively. An endurant does not have temporal parts, and

persists in time while keeping its identity. Examples of endurants include a

house, a person, a hole, the (objectified) color of an apple, and an amount

Agent Ontology 101

of sand. A perdurant, conversely, is composed of temporal parts. A storm,

a heart attack and a business process are three examples of perdurants.

Perdurant

Physical ObjectAmount of

Matter

{disjoint}

Substance

Individual

Endurant

Individual

Moment

Individual

{disjoint, complete}

inheres in
1..*

*

1

Relator

Intrinsic

Moment

{disjoint}

{disjoint}

Externally

Dependent

Moment

existentially depends*

mediates
2..*

*

Figure 3.4: Different kinds of individuals in UFO-A

Endurants are further specialized into substance individual and mo-

ment individual. The former refers to an endurant that possesses direct

spatio-temporal properties and can exist by itself, i.e. substance individuals

are not existentially dependent on other endurants, except possibly on some

of its parts. A building, a person and a dog are examples of substance indi-

viduals. A moment individual, however, is an endurant that cannot exist

by itself; that is, it existentially depends on other individuals (e.g. the age of

a person, a belief of an agent). Making an analogy with the object-oriented

software engineering domain, we can understand the difference between sub-

stance and moment comparing them respectively to object and (objectified)

property.

A moment individual can be either an intrinsic moment or a relator

(or relational moment). An intrinsic moment is a moment individual

that is existentially dependent on one single individual (e.g., the color of

an apple depends on the existence of the apple itself). Meanwhile, a re-

lator is a moment individual that is existentially dependent on more than

102 The ARknowD Methodology

one individual (e.g., a marriage, an enrollment between a student an edu-

cational institution). In other words, a relator is an individual capable of

connecting or mediating entities (Guizzardi, 2005). For example, we can

say that John is married to Mary because there is an individual marriage

relator that existentially depends on both John and Mary, thus, mediating

the two. Likewise, we can say that Lisa works for Xerox because there is an

employment relator mediating Lisa and Xerox.

We can say that endurants bear moments, or inversely, that a moment

inheres in an endurant. The relation of inherence is a special type of exis-

tential dependence relation between moments and their bearers. Formally,

besides existential dependency, inherence implies the so-called non-migration

principle (Guizzardi, 2005), i.e., if a moment X inheres in an individual Y,

then there is no individual Z distinct from Y such that X inheres in Z. In

other words, inherence is a functional existential dependence relation. This

way, Fig. 3.4 particularly emphasizes that an intrinsic moment inheres in

one single endurant. An externally dependent moment is a special kind

of intrinsic moment which although inhering in a specific endurant, also ex-

istentially depends on another one. The employee identifier is an example

of externally dependent moment, since although inherent to the employee,

is also dependent on the organization where this employee works. A relator

R mediating the individuals A and B inheres in the individual composed of

A and B (the so-called mereological sum of A and B)(Guizzardi, 2005) and,

due to the aforementioned non-migration principle, this individual cannot

change. In other words, R inheres in (and, thus, is existentially dependent

on) exactly that specific collection of individuals formed by A and B.

A substance individual is further specialized into amount of matter

and physical object. A physical object satisfies a condition of unity, for

which certain parts can change without affecting its identity (e.g. a house,

a person, the moon). Conversely, an amount of matter is a substance

individual that does not satisfy a condition of unity, typically referred to by

means of mass nouns (e.g. a lump of clay, a pile of bricks, an amount of

sand).

In Fig. 3.4, we emphasized that all specializations are disjoint, meaning

Agent Ontology 103

that if an individual is an instance of one specialization class, it can not

be instantiated by another specialization class with the same parent. All

specialization relations described in this section have this nature. Hence,

we refrain from providing such details in the subsequent pictures in order

to simplify the models. The above information presented for the individual

level may be also replicated for the type level. Figure 3.5 shows an entity

may be either an individual or a type, the former instantiating the latter.

So for example, the substance individuals John, Mary and Lisa instantiate

the substance type Person.

Individual

Moment Type

Substance

Kind

Substance

Type

Substance

Role

Endurant Type

Type

Entity

Relator

Type

Material

Relation

Formal

Relation

Relation

instantiates

Figure 3.5: UFO-A differentiating between Kind and Role

Fig. 3.5 shows that for the category of substance types, UFO-A makes

a further distinction based on the formal meta-properties of rigidity and

anti-rigidity. In simple terms, a type T is said to be rigid if every instance

x of T is necessarily (in the modal sense) an instance of T. In other words,

x cannot cease to instantiate T without ceasing to exist. Conversely, a type

T is anti-rigid if every instance x of T is possibly (in the modal sense) not

an instance of T, i.e., if x can cease to instantiate T without ceasing to exist

(Guizzardi, 2005). A stereotypical example highlighting this distinction is

given by the types person and employee, both instantiated by the individual

Lisa in a given circumstance. Whilst Lisa can cease to be an employee of

Xerox (and there were periods of time in which Lisa was not one), she cannot

104 The ARknowD Methodology

cease to be a person. In this thesis, a substance type that is rigid is named

a Kind. In contrast, a substance anti-rigid type is named a Role.

Besides highlighting this important difference within the category of sub-

stance types, Fig. 3.5 also presents other entities. A relation is a type whose

instances are tuples of connected elements. For instance, taking Lisa’s exam-

ple presented above, the ‘works at’ relation connects Lisa to Xerox. There

are two types of relations: formal relation and material relation. A

formal relation holds between two or more entities directly, without any

further intervening individual (Guizzardi, 2005). Examples of formal rela-

tion include Lisa ‘is older than’ Mike, and John ‘is taller than’ Mary. As

pointed out in (Guizzardi, 2005), the relata of these relations are in fact

moments and not substance individuals. To say that Lisa ‘is older than’

Mike is to say that Lisa’s age is bigger than Mike’s age. Moreover, the rela-

tion between Lisa and Mike exists without the need for any real connection

between the two. To put it differently, these relations between substantials

are reducible to purely formal relations between intrinsic moments of the in-

volved relata. Guizzardi (2005) also points out that instantiation, inherence

and existential dependency are all types of formal relations.

Conversely, material relations are founded on the existence of a rela-

tor. Thus, Lisa ‘works at’ Xerox because there is an employment relator

connecting the two. This employment can be composed, for example, of all

commitments and claims associated with the role Lisa plays at that organi-

zation, and vice-versa (i.e. by all commitments and claims associated to the

organization towards Lisa). Later in this section we provide a more exten-

sive discussion on commitments and claims. Likewise, John ‘is kissing’ Mary

because there is an individual kiss connecting the two. In summary, differ-

ently from formal relations, material relations are not reducible to relations

between intrinsic moments of the involved relata.

3.5.2 UFO-B: an Ontology of Perdurants

Figure 3.6 presents UFO-B, in which the concept of perdurant coming from

UFO-A is further specialized into state and event. A state is a perdurant

Agent Ontology 105

State

Complex EventAtomic Event

Event

Perdurant

(from UFO-A)

Pre-state

Post-state
1 *

1 * 2..*

Figure 3.6: UFO-B: understanding perdurants in details

whose temporal parts belongs to the same state type as the whole. An

event, on the other hand, is a perdurant that is related to exactly two

states (its pre-state and its post-state). Pre-state and post-state are shown

in the relations between event and state in Fig. 3.6.

An event is then specialized into atomic event and complex event.

The former refers to an event that happens instantaneously, that is, an

event without duration, for instance: an explosion, or a message reception.

The latter is an event that is composed of other events by means of event

composition operators. Examples of complex event comprehend a parallel

occurrence of two explosions, a storm, a heart attack, and a work meeting.

A process can be understood as a synonymous of complex event, i.e. an

event that is composed of two or more events as shown in Fig. 3.6.

3.5.3 Extending UFO-C

UFO-C is based on the concepts of physical object and moment in-

dividual coming from UFO-A, and on the concept of event specified by

UFO-B. Our extended version of UFO-C is depicted subsequently, starting

from Figure 3.7 until Figure 3.10.

Fig. 3.7 shows that the UFO-A concept of physical object is here

specialized into physical agent and non-agentive object. A physical

agent is a physical object that creates action events, perceives events

(possibly created by other physical agents), and to which we can ascribe

a mental state. Here are some examples of physical agents: a man, a cat, a

106 The ARknowD Methodology

Physical Object

(from UFO-A)

Physical Agent

Non-Agentive

Object

Event

(from UFO-B)

Action Event Non-Action

Event

perceives
*

creates *1..*

Communicative

Action Event

Institutional

Agent

receives

sends

1..*

*

*

1

Human Agent Artificial Agent

Resource

Complex

Action Event

Atomic Action

Event

Plan Execution

controls

uses*

1..** 1..*

2..*

1..*

InternalAgent

Plan Type

instantiates

Figure 3.7: Extending UFO-C from the UFO-A concept of physical object
and the UFO-B concept of event

robot. A non-agentive object is a physical object that is not a physical

agent (e.g. a book and a tree). A non-agentive object can be a resource,

meaning that such object is used by a physical agent with specific purposes,

and typically owned or controlled by this or other physical agent (relation

owns and controls outcoming from physical agent).

A distinction is made between human agent, artificial agent and in-

stitutional agent (all three sub-kinds of physical agent), to differentiate

humans agents, software (or hardware) agents, and agents representing or-

ganizations or organization sub-parts (such as departments and divisions).

Institutional agents are composed of several internal agents, which may be

any kind of physical agent (human, artificial or institutional).

Most agent-oriented approaches only focus on agents, disregarding the

presence of objects in the modeled scenario. We consider this a limitation

and thus, acknowledge the existence of these two distinct entities. Especially

in KM settings, some connections can be intuitively identified between the

knowledge artifacts and objects, between the KM system users and human

Agent Ontology 107

agents, and between a KM supporting organization as institutional agents.

Besides, the KM system itself can also be composed of multiple software

agents that apply non-agentive objects as resources, mediating the processes

of knowledge creation, integration and sharing.

Action event and non-action event are two types of event (concept

from UFO-B). The former refers to an event that is created through the

action of a physical agent, for instance, ‘sending a message to another phys-

ical agent’, ‘writing a book’, and ‘reviewing a paper’. The latter is an event

that is not created through an action of a physical agent (e.g. ‘a deadline is

achieved’, and ‘it becomes dark’), although it may be perceived by him/her.

This differentiation is essential in agent-oriented approaches as modeling

the environment populated by agents is paramount. Therefore, non-action

events are typically events generated by the environment itself and perceived

by the agents living in it. A plan execution can be defined as an intended

execution of one or more actions, being in this way a special kind of action

event. In other words, a plan execution may be composed by one or more

sequentially ordered action events, targeting a particular outcome of interest

to the agent. These action events may be triggered by both action and non-

action events perceived by the agent. Besides, a plan execution is connected

to a plan type, which is a general description of the action sequence that

a physical agent should execute.

Analogously to an UFO-B atomic event, an atomic action event is

an action event that happens instantaneously, such as ‘picking a book in a

shelve’ and ‘sending a message’. In fact, ‘sending a message’ can also be

seen as a subtype of atomic action event, referred to as communicative

action event. Physical agents both send and receive communicative ac-

tion events. Communication is one of the most important aspects of agent-

oriented systems as this triggers one agent to adopt goals or to execute

action events on behalf of another. As already pointed out in section 2.4,

unlike objects that simply execute actions when requested, an agent reasons

over another agent’s request before agreeing on a particular course of ac-

tion (Wooldridge, 1999). Communication may be also required to inform an

agent about changes in one’s course of action or in the environment itself,

108 The ARknowD Methodology

thus altering the agent’s beliefs.

Physical Agent

Individual

Moment Individual

(from UFO-A)

Relator

(from UFO-A)

Intrinsic Moment

(from UFO-A)

Mental Moment

*

1

inheres in

Intention Perception Belief

Commitment

State of Affairs

Goal

1..*

Social Moment

Claim

*

2..*

mediates

*

Plan Execution

achieves

refers to

Hardgoal

Softgoal1..*

*

refers to

refers to

Social Relator

1
*

1

*

Figure 3.8: Extending UFO-C from the UFO-A concept of moment individ-
ual

In Fig. 3.8, the intrinsic moment concept of UFO-A is specialized into

mental moment, which denotes an intrinsic moment that is existentially

dependent on a particular agent, being an inseparable part of its mental

state. Examples of mental moments include a thought, a perception, a be-

lief, and an individual intention. We can then say that a mental moment

inheres in a physical agent (relation inheres in). Here, we choose the

mental moments that we find more useful for modeling agent-oriented sys-

tems. Perception is a relevant concept to express the relation of agents to

events sensed from the environment and from other agents. Belief regards

information the agent has about the environment and about other agents.

In KM settings, belief and perception are highly conditioned by organiza-

tional culture, i.e. the views, values and behavior socially accepted within

the organization’s boundaries.

Organizational culture may also constrain the action of agents, and this is

highly related to another important type of agent’s mental moments, namely,

Agent Ontology 109

intention. Agent’s intention directly leads to the adoption of certain goals

and objectives. Taking this into account, we here specify goal as a particular

state of affairs (i.e. condition or state of the world) related to an intention

inhered in a physical agent (see the refers to relation between goal and

intention). A goal may be specialized into hardgoal and softgoal. Here,

we adopt Tropos’ definitions that state that a hardgoal is associated a specific

condition for verifying whether it has been satisfied or not. A softgoal,

instead, has no clear-cut satisfaction condition. Due to this fuzzy nature

of softgoal, we decide not to go forward with the analysis of this concept

here, leaving it as future work. However, since we apply this concept in the

analysis we make in this thesis, we found it important to include it in the

ontology.

Social moment is an specialization of the UFO-A concept of exter-

nally dependent moment, including the concepts of commitment and

claim. When two physical agents agree to accomplish goals to one another,

a commitment/claim pair is generated between them. These deontic con-

cepts are highly important to regulate the social relations between members

of an organization. In KM environments, agents may have several commit-

ments and claims towards one another. On one hand, a consultant might

commit to his colleague to pass on some valuable information about a past

case that he was involved in, which is similar to a present task of his col-

league. On the other hand, the colleague can claim this knowledge transfer

from the consultant. A pair commitment/claim constitutes a social rela-

tor, which is a particular type of UFO-A relator. Fig. 3.8 also shows that a

commitment and claim refer to a goal (refers to between commitment and

goal and between claim and goal). In other words, when a physical agent

A commits to a physical agent B, this means that A adopts a goal of B.

Conversely, the social relator created between A and B state that B has the

right to claim the accomplishment of this specific goal to A. Castelfranchi

(1995) made an important contribution on the understanding of commit-

ments (and consequently also on the clarification of claims). In one of his

work, he cites Searle, who claims that “a commitment is a right producing

act” (Castelfranchi, 1995), highlighting that it is much more complex for an

110 The ARknowD Methodology

agent to disengage from commitments towards other agents (social commit-

ments, in Castelfranchi’s term) than to dismiss his own intentions (which

Castelfranchi calls internal commitments).

Physical Agent

Individual

Moment Individual

(from UFO-A)

Intrinsic

Moment

1

inheres in

Social Moment

*

Physical Agent

Kind

Physical Agent

Type

instantiates

11

Physical Agent

Role

Social Moment

Type
instantiates

defines

1 1

*

1..*

Figure 3.9: Pointing out the difference between physical agent type and
physical agent role

Fig. 3.9 emphasizes the difference between physical agent type and

physical agent individual. Furthermore, it also depicts the difference

between rigid and anti-rigid agent types, here physical agent kind and

physical agent role. While person is an example of a physical agent kind,

physical agent roles are specifically suited to model organizational roles (e.g.

secretary, manager) as well as other roles performed by agents in specific

situations that can be played independently of the position someone has in

an organization (e.g. ‘coffee maker’ or ‘book reader’). As previously clarified

in UFO-A, a person cannot cease to be a person while a secretary can be

promoted into manager, or can assume another organizational position. This

distinction is characterized by the rigidity of physical agent type and the

anti-rigidity of physical agent role.

Still aiming at clarifying the concept of agent role, Fig. 3.9 shows that an

agent role is defined by social moment types, which describe what the set

of general commitments and general claims a physical agent playing that role

has. This is again based on the work of Castelfranchi, who defines a general

commitment as a commitment an agent makes towards a set of goals of the

Agent Ontology 111

same type. For example, when agreeing to perform the organizational role of

a ‘secretary’, one is automatically committing oneself to ‘writing letters’ and

‘making appointments’ on behalf of one’s boss. Conversely, this person also

has some claims a priori, such as receiving a certain salary in the end of the

month and having a suitable working place. Bottazzi and Ferrario (2005)

reminds us that an agent’s autonomy within an organization is restricted by

the set of general commitments and claims he/she has, as a result of playing

a specific role, also highlighted in (Dignum, 2004a).

Physical Agent

Goal

Dependency

Formal Relation

(from UFO-A)

Dependency
1

Plan

Dependency

Resource

Dependency

Plan Resource

Dependum

Dependum Dependum

Depender

Dependee1

1

1 1

* * *

*

*

Goal

Delegation

Material Relation

(from UFO-A)

Delegation

Plan

Delegation

Goal

Resource

Delegatum

Acquisitum

1 1

1

* *

*

1 * Delegator

Delegatee*

1

1

Plan

*

1

Social Relator

associated to

1

Delegatum

Resource

Acquisition

associated to
associated to

accomplishes

associated to

AcquisitorAcquisitee

1 1

* *

Figure 3.10: Distinguishing between dependency, delegation and acquisition
relations

Figure 3.10 finally concludes our UFO-C extension, depicting the impor-

tant distinction between the concepts of dependency and delegation. The

first difference regards the fact that while a dependency constitutes a for-

mal relation, a delegation consists of a material relation, following the

definitions of UFO-A. Let us examine this difference in further detail. The

figure shows that a dependency connects two physical agents (a depen-

der and a dependee) and a dependum, whose nature defines the type of

112 The ARknowD Methodology

dependency. Thus, a goal dependum indicates a goal dependency, a plan

dependency is created around a plan, and a resource is a dependum of the

resource dependency. An agent A (the depender) depends on an agent B

(the dependee) regarding a goal G if G is a goal of agent A, but A cannot

accomplish G, and agent B can accomplish G. Here, the fact that an agent

cannot accomplish a goal may mean that this agent either does not have the

ability to achieve it. Or else, it may denote that this agent’s pursuit towards

this goal may interfere with his/her other intentions, such that he/she de-

cides not to pursue this goal after all. This may well be a reason why agent

A decides to delegate such goal accomplishment to agent B. A delegation is

thus associated with a dependency but it is more than that. As a material

relation, it is founded on something more than its connected elements. In

this case, the connected elements are two physical agents (delegator and

delegatee) and a goal (delegatum), and the foundation of this material

relation is the social relator (i.e. a commitment/claim pair) established be-

tween the two physical agents involved in this delegation. In other words,

when agent A delegates a goal G to agent B, besides the fact that A depends

on B regarding G, B commits him/herself to accomplish G on behalf of A.

Goal and plan delegation refer to what Castelfranchi defines as open and

close delegation (Castelfranchi and Falcone, 1998), meaning that the former

leaves the decision regarding the strategy towards goal accomplishment to

the depender. The latter rather prescribes a specific strategy (i.e. a plan)

the depender should adopt towards achieving the delegated goal.

To illustrate the difference between dependency and delegation, consider

the following case. Suppose John is a program committee member of a

certain conference and that he received from Paul (the conference program

chair) an article X to review. Suppose that John cannot review this article

by himself, since there are some aspects of the article which are outside

his field of competence. Now, suppose that George is a colleague of John

who is knowledgeable exactly in those aspects that John needs to review

article X. In this case, we could say that John depends on George to review

article X. Notice, however, that this relation between John and George can

be reduced to relations between the goals and capabilities of these individual

Agent Ontology 113

agents. Moreover, this relation does not even require that the related agents

are aware of this dependence. This is certainly not the case for the relation

between Paul and John. As the program committee chair, Paul depends on

John to review article X. However, in this case, not only they are both aware

of this dependence but there is the explicit commitment of John to Paul to

review article X. In other words, the delegation of Paul to John to review

article X cannot be reduced to relations between their intrinsic moments,

but it requires the existence of a certain relator (a commitment/claim pair)

that founds this relation. Not explicit in the diagram of Fig. 3.10 is the

concept of socially can achieve, or socially can execute. In the paragraph

above, when we say that a certain agent can achieve a goal, this means

that such agent is able to do it him/herself or can delegate to another agent

that can accomplish it on his/her behalf. In the example above, if John can

review part of article X by himself and can delegate a remaining part to

George, we could say that John socially can achieve the goal of reviewing

article X.

Similarly to delegation, resource acquisition is also a material relation

associated with the same concepts of dependency and social relator. We

created this as a different concept because when agent A needs access to a

resource R controlled by agent B, it is awkward to say that agent A delegates

resource R to agent B. Moreover, this relation is differentiated as follows:

an agent A acquires a resource R from agent B is equivalent to say that

agent A needs to use resource R, agent A does not control resource R, agent

B controls resource R, and agent B commits him/herself to give agent A

access to resource R. In an alternative formulation we can say that if agent

A acquires resource R from agent B then: a) there is a resource dependence

from A to B w.r.t. R; b) A and B are mutually aware of this dependency;

c) B socially commits to give A access to R.

114 The ARknowD Methodology

3.6 Evaluating ARKnowD’s Notation

When conceiving a novel modeling language, one should obviously be con-

cerned with its quality. This quality traduces in how well the language is

able to represent phenomena in its domain of discourse, and on how clearly

the language is able to communicate such phenomena to the eventual readers

of the model. ARKnowD combines the notations of two different modeling

languages, the ones of Tropos and AORML. It is thus important to verify

the quality of these languages individually, but especially the consistency in

their combination to generate ARKnowD’s language.

3.6.1 Evaluation Method

Guizzardi (2005) provides a framework for evaluating modeling languages.

This framework verifies how clear and expressive a language is, by focusing

on its notation, but also evaluates how well this language is able to represent

the state of affairs for which it is proposed (also referred in this work as

domain appropriateness).

“The domain appropriateness of a language is a measure of the suitability

of a language to model phenomena in a given domain, or in other words, of

its truthfulness of a language to a given domain reality. (...) Comprehen-

sibility appropriateness refers to how easy is for a user a given language to

recognize what that language’s constructs mean in terms of domain concepts

and, how easy is to understand, communicate and reason with the specifica-

tions produced in that language.”(pg. 28)

The proposed framework is based on the construction of a domain ontol-

ogy to describe the conceptual domain of discourse. This ontology is then

used as a type of ‘mirror’ for the modeling language, i.e. for verifying how

well this modeling language is able to represent the concepts and relations

represented in the ontology. This verification results is a measure of the

quality of the domain appropriateness of the given language.

Given the ontology elaborated and described in the previous section, we

intend to apply this method to evaluate ARKnowD’s language. The eval-

Evaluating ARKnowD’s Notation 115

uation criterion is based on four properties, namely: lucidity, soundness,

laconicity and completeness.

A language is considered lucid according to a conceptualization if each of

its constructs can represent at most one entity of this conceptualization. Al-

though not exactly the same, lucidity is closely linked to construct overload,

i.e. having a single language construct representing two or more ontologi-

cal constructs. As stated by Guizzardi (2005, pg. 31), “Construct overload

is considered an undesirable property of a modeling language since it causes

ambiguity and, hence, undermines clarity. When a construct overload exists,

users have to bring additional knowledge not contained in the specification

to understand the phenomena which are being represented.”

Soundness refers to the property of a language of representing solely the

entities of the domain conceptualization. Having one construct that does

not map to any ontological construct is also known as construct excess. The

presence of this extra construct should be avoided since it undermines the

understanding of the specification. In other words, a specification is clear if

the reader is able to link the language constructs to the entities of the domain

of discourse. Consequently, only the entities of this domain (represented in

the domain ontology) should be modeled with the use of language constructs.

A language is said laconic if it possesses only one construct to represent

each phenomenon in the domain or discourse (i.e. each entity in the domain

ontology). Conversely, the same conceptual entity may be represented by

two or more constructs in a specification, consequently adding confusion to

the meaning of the model. A reader may ask himself, for example, if the

two constructs are actually the same or if there is any semantic distinction

between them. Laconicity is then related to construct redundancy, which

besides turning more difficult the understanding of specifications, adds un-

necessary complexity to the modeling language.

A modeling language is said to be complete if every concept in a domain

conceptualization is covered by at least one modeling construct of the lan-

guage. This is directly linked to the expressivity of the given language. In

other words, if a language is incomplete, it fails to represent all phenom-

116 The ARknowD Methodology

ena in the given domain of discourse. The result of this incompleteness is

either an incomplete specifications or construct overload, which are both

undesirable for deteriorating the clarity of the specifications produced with

the given language.

3.6.2 Evaluation

Taking the ontology presented in section 3.5 and based on the method de-

scribed above, we have found a few problems in the current Tropos and

AORML notations. Consequently, we have decided to make a few adjust-

ments in order to proceed with their integration into ARKnowD. It is im-

portant to point out that these notations are here considered in combination

with one another, so for example, if one comprehends a set of ontological

concepts, the lack of these same concepts in the other is not considered

incompleteness. This decision is motivated by the fact that in ARKnowD,

each notation is used in a separate activity, for which one concept or another

may be more appropriate.

In Tropos, there are one case of lack of laconicity, one case of unsound-

ness, two cases of incompleteness, and one case of missing lucidity. First,

let us address the lack of laconicity and the unsoundness cases together. In

Tropos, besides the concept of agent and role, corresponding to our ontolog-

ical concepts of physical agent type and physical agent role, there are two

other concepts: actor and position. Figure 3.11 depicts these concepts and

their corresponding notations.

The concept of position is considered solely with the purpose of aggre-

gating different roles. However, for not being a domain concept, position

prevents Tropos from being considered laconic. Let us analyze this concept

a bit further in order to make sure that it is really not present in the domain.

As stated in section 3.5.3, a physical agent role is defined by the set of social

moments, i.e. commitments and claims a physical agent playing such role

agrees to. As a role aggregation, a position is defined as two or more set

of social moments, which can be finally characterized as a social moment.

Referring to rigidity or antirigidity, position is an antirigid concept as well

Evaluating ARKnowD’s Notation 117

Agent

Actor

Role Position

occupies

plays aggregates

actor agent role position

(A)

(B)

Figure 3.11: (A) an excerpt of the Tropos’s metamodel showing the concept
of actor and its specializations and (B) corresponding notations

as role. We conclude that there is no real differentiation between role and

position, thus not justifying the use of two ontological concepts instead of

one.

Still referring to Fig. 3.11, we note that actor is a general concept which

can refer to an agent, to a role or to a position. However, we find no reason

why to consider such a concept, as from the start of a domain analysis, the

analyst is able to identify the type of each domain participant, considering

the rigidity and anti-rigidity properties explained in section 3.5.1. Thus, the

concept of actor leads to unsoundness and we prefer not to consider it in

ARKnowD. Dismissing the position and actor concept, the analyst identifies

from start, if a domain participant is an agent or a role. For representing

an agent, ARknowD adopts Tropos’s actor notation (empty circle) for being

the most simple form, maintaining the Tropos’s role notation as it is.

Going forward with the evaluation of the Tropos language, we address the

incompleteness and missing lucidity issues by considering the case illustrated

in Figure 3.12.

Fig. 3.12 illustrates the following situation. The department manager of

an organization relies on the department secretary to make an appointment

for a meeting with all the employees of the department. The secretary, on her

turn, depends on a specific calender system named eDate. The secretary is

118 The ARknowD Methodology

Department

Secretary

setting up a meeting

with department’s

personnel

Department

Manager

eDates

System

having employees’

availability

information

(A) (B)

eDates

System

Developer

having free new

system releases

Department

Secretary

setting up a meeting

with department’s

personnel

Department

Manager

eDates

System

having employees’

availability

information

eDates

System

Developer

having free new

system releases

Figure 3.12: Correcting two cases of incompleteness

always checking for free new versions of the eDate system in the developer’s

website, aiming at profiting from new functionality and enhancements in

this system. Department manager, department secretary, eDate, and eDate

system developer are example of Tropos agents, which correspond to the

UFO-C concept of physical agent.

In part (A), however, it is not possible to differentiate between physical

agent type and physical agent individual. For instance, it is not clear

if we talk about a specific secretary and a specific system, or general ones.

Representing both ontological concepts using only one language construct

is understood as construct overload (leading to missing lucidity). This may

be in the way for a clear understanding of the modeled setting. We have

therefore provided in (B), a way to differentiate these two entities. Inspired

by UML, we chose to underline the name of physical agent individuals

to point out the difference between them and physical agent type, thus

imitating the way UML differentiates between instances and classes. Our

choice provides a good connection between Tropos and AORML notation,

Evaluating ARKnowD’s Notation 119

which already adopts this UML strategy. Following such strategy, part (B)

depicts eDate as an individual and all other agents as types. The choice of

making the others as types is to maintain a level of generality for the model,

for instance this case would typically hold even if the secretary was changed.

The new one would continue to be responsible for setting up meetings on

behalf of his/her boss, and using the same system to do so.

A case of incompleteness that can be noted in Fig. 3.12 (A) refers to the

lack of language expressivity of the Tropos language to model the concept of

dependency. What Tropos usually terms dependency is actually a case of

delegation according to our ontology. As we have seen, the latter is stronger

than the previous, as besides dependency it also involves commitment from

the dependee in relation to the depender. In part (A) of the figure, the

delegation depicted between the secretary and the eDate system developer is

actually only a dependency. The secretary does not know the developer, who

on his turn has no way to commit specifically to her on releasing new system’s

versions. In other words, if the developer decides to stop providing free

releases and rather to start charging for new eDate versions, the secretary

does not have a claim towards him and will just have to live with this new

situation. To correct this expressivity problem, we created a new symbol

to distinguish dependency from delegation. This is a similar arrow as used

before, however empty headed to denote the lack of commitment. This new

symbol is illustrated in Fig. 3.12 (B).

The other case of incompleteness, actually refers to the concept of re-

source acquisition. However, in this case, we simply refer differently to what

Tropos formerly termed resource dependency. We also do not see a point

in changing the notation in this case, as resource acquisition, goal and plan

delegations may be differentiated as shown in Figure 3.13. This notation

maintains uniformity regarding the ones used for goal and plan delegation,

showing that analogously to these relations, a resource acquisition is a re-

source dependency added by a commitment (in this case, the commitment

of the acquisitee to provide the acquisitor with access to the acquisitum).

In AORML, we have found one case of missing lucidity. This regards the

notation used at the same time to model a non-agentive object and a belief.

120 The ARknowD Methodology

dependeedepender

goal dependency

delegateedelegator

goal delegation

dependeedepender

plan dependency

delegateedelegator

plan delegation

dependeedepender

resource dependency

aquisiteeacquisitor

resource acquisition

Figure 3.13: Differentiating the three types of dependencies, goal and plan
delegation, and resource acquisition

To correct this problem, we use stereotypes, an UML construct commonly

used to extend this language, differentiating old and new entities. Such

construct is already applied in AORML, for example to distinguish between

human, institutional and artificial agents. Figure 3.14 shows our proposed

solution, depicting a typical situation involving a library institutional agent

and a borrower human agent. The library uses an information system to

organize its book collection. The borrower borrows books, having his own

internal beliefs related to these books. The figure differentiates the actual

books from the agent’s internal beliefs by stereotyping the belief class.

ITBE Library

Book

LibSys

<<institutional>>

Borrower

<<artificial>>

<<human>>

Book

<<belief>>

organizes

borrows

agent

object

refers to

Legend

Figure 3.14: Distinguishing beliefs from non-agentive objects in AORML
using stereotypes

MDA-inspired Transformation Method 121

3.7 MDA-inspired Transformation Method

Recent progress in the development of distributed systems include OMG’s

efforts towards the definition of a Model Driven Architecture (MDA)2. Al-

though aimed at developing object-oriented systems, a few elements of this

work may be equally valuable for agent-orientation. This is the case of the

concept of viewpoints and the idea of model transformation. This section

discusses both topics and describes how this is applied in the context of

ARKnowD.

3.7.1 The Model Driven Architecture Viewpoints

MDA has been developed to enable flexible design of distributed software

systems. It provides an open, vendor-neutral approach to avoid problems

arising from business processes and technological changes. In this respect,

MDA proposes the separation of the specification of the operation of a system

from the details of the way that system uses the capabilities of its platforms.

In other words, for each system under development, MDA proposes the defi-

nition of a platform-independent model (PIM) that can then be transformed

into one or more platform-specific models (PSMs). This allows the system

to be implemented in different platforms, while still maintaining the same

PIM. Besides, benefits of this approach stem from the possibility to par-

tially automate the model transformation process. In this way, development

costs may be reduced and software quality may be improved. In addition to

that, this approach facilitates integration, evolution and migration of soft-

ware solutions, hence contributing to the limitation of maintenance costs for

distributed applications.

Computational-independent, platform-independent and platform-specif-

ic are known as different viewpoints in MDA. “A viewpoint is a technique

for abstraction using a selected set of architectural concepts and structur-

ing rules, in order to focus on particular concerns within that system. Here

2MDA Guide Version 1.0.1, omg/2003-06-01, available at
http://www.omg.org/docs/omg/03-06-01.pdf

122 The ARknowD Methodology

‘abstraction’ is used to mean the process of suppressing selected details to

establish a simplified model.” (MDA Guide Version 1.0.1, pg. 2–3). A

computation-independent viewpoint focuses on the environment or domain

of the system. At this point, the system’s requirements are hidden or un-

determined. The result of applying this viewpoint is the development of

a Computation-independent model (CIM), also known as domain model or

business model. A platform-independent viewpoint focuses on the general

functionality of the system, without including the details that are specific

of a given platform. In other words, this viewpoint presents part of the sys-

tem specification that does not change from one platform to another. The

platform-specific viewpoint, conversely, is targeted at adjusting the PIM

specifications to a certain platform, providing details on how such a plat-

form implements the PIM specifications. The already mentioned PIM and

PSM are elaborated when respectively taking a platform-independent and a

platform-specific viewpoint of the system.

When a system is developed, its CIM, PIM and PSM must be consistent.

In other words, in an MDA specification of a system, CIM requirements

should be traceable to the PIM and PSM constructs that implement them,

and vice-versa. For maintaining consistency between models, enabling a

smooth transition from one viewpoint to another, MDA proposes the use of

transformation processes, i.e. processes that convert one model to another

model of the same system.

The MDA Guide Version 1.0.1 describes several transformation meth-

ods. Here, we limit ourselves on describing the metamodel transformation,

which is the one applied in this work. Figure 3.15 illustrates this type of

transformation.

As depicted in Fig. 3.15, first, a PIM is specified, using a platform-

independent modeling language. Then, a particular platform is selected for

implementing the system. At this point, a transformation specification to

convert the notation used in PIM to the platform-specific language is already

available. This specification maps the metamodels of the language applied in

the PIM to the one used in the PSM. Consequently, a PSM may be produced

by following the guidelines of the transformation specification. Similarly, a

MDA-inspired Transformation Method 123

PIM

PSM

Transformation

Specification

Platform-

Independent

Metamodel

Platform-

Specific

Metamodel

Source language

Target language

language used

language used

Transformation

Figure 3.15: MDA metamodel transformation (MDA Guide Version 1.0.1)

CIM may be converted into a PIM.

The described transformation method offers a systematic approach to

convert the models elaborated taking different MDA viewpoints. Following,

we explore how this is used in the context of the ARKnowD methodology.

3.7.2 ARKnowD’s Viewpoints and Models

In this work, we adopt the MDA viewpoints approach, aiming at suppressing

unnecessary details according to different abstraction levels, which results in

an appropriate separation of concerns regarding system analysis and design.

Table 3.1 shows ARKnowD viewpoints framework.

Table 3.1 shows for each abstraction level (or viewpoint), which models

are used, according to each modeling aspect, i.e. the interaction, informa-

tion and behavior aspects. These three aspects are, in general, targeted in

every system analysis and design models. The information aspect compre-

hends the entities composing the system and the relations existing among

them. A preliminary view of such entities and relations can be obtained

in the CIM with the use of Tropos’s actor and goal diagrams, which depict

the agents and resources (later objects) of the domain and a high-level view

of how they relate. However, a complete information model may only be

attained through the use of AOR Agent Diagrams (modeling agent and ob-

ject classes) and UML Class Diagrams (exclusively modeling object classes),

124 The ARknowD Methodology

later in the PIM. The interaction aspect, as its name suggests, deals with the

dynamic aspects of the system, modeling the interactions among the agents

composing it. In the CIM, Tropos’s actor and goal diagrams, although not

providing a detailed model of these interactions, provide an initial view of

the interaction relationships among agents through the dependencies, dele-

gations and acquisition links they show. Such interactions are modeled in

detail in the PIM with the use of the three types of AOR interaction di-

agrams. Although characteristic of the PIM, these diagrams may be also

applied in the CIM, in case any process of the domain must be analyzed in

further details. Finally, the behavior aspect focuses on the internal behavior

of each system component. Once more, in the CIM, Tropos only provides a

high-level view of such behavior, specifically with the use of goal diagrams,

which depict the internal perspective of a single agent of the domain. The

behavior of the system agents may be better understood in the PIM, by

applying AOR pattern and activity diagrams, which provide details about

the internal reasoning and choices made by the agents.

As for the PSM, the used diagrams closely depend on the choice of the

platform in which the system is finally implemented. Here we exemplify

possible models used for each aspect if a Java platform is selected for im-

plementation. In this case, UML Class Diagrams providing more details

than the one designed in the PIM are used both for information and behav-

ior modeling. Such diagrams contain all object classes with their respective

attributes typed according to the platform, and depict all methods to be exe-

cuted by an object. Next to this, UML Sequence and Deployment Diagrams

model the interaction aspect, respectively providing details on the interac-

tion of objects and the distribution of objects among the system hardware

components (i.e. clients, servers, etc.). This thesis focuses more carefully

on the CIM and PIM, giving less strength to the PSM, although chapter 6

illustrates how a system may be implemented based on a PSM that refines

a specific PIM designed in chapter 5.

The division in three abstraction levels provide us with an interesting

view, showing us that we should naturally target the modeling task from

different perspectives: the domain model (CIM), a design model which can

M
D

A
-in

sp
ire

d
T
ra

n
sfo

rm
a
tio

n
M

e
th

o
d

125

Abstraction Level Viewpoint Aspects
Information Interaction Behavior

Computation-
independent Model
(CIM)

Tropos Actor Dia-
gram, Tropos Goal
Diagram

Tropos Actor Dia-
gram, Tropos Goal
Diagram

Tropos Goal Dia-
gram

Platform-
independent Model
(PIM)

Tropos Actor Dia-
gram, AOR Agent
Diagram, UML
Class Diagrams

Tropos Actor Di-
agram, Tropos
Goal Diagram,
AOR Interaction
Sequence Diagram,
AOR Interaction
Pattern Diagram,
AOR Interaction
Frame Diagram

Tropos Goal Dia-
gram, AOR Inter-
action Pattern Di-
agrams, AOR In-
ternal Activity Di-
agrams

Platform-specific
Model (PSM)

UML Class Dia-
grams, others

UML Sequence
Diagrams, UML
Deployment Dia-
grams, others

UML Class Dia-
grams, others

Table 3.1: ARKnowD’s viewpoints

126 The ARknowD Methodology

be reused, meaning that it is independent of the implementation platform

(PIM), and finally a design model that depends on the implementation plat-

form of our choice (PSM). Referring to section 3.3, we are able to link the

models generated as a result of the focus on the different viewpoints explored

in table 3.1 with ARKnowD’s modeling activities. The models resulting from

the requirements analysis activities are typically CIM. Next, the architec-

tural design and the initial detailed design activities generate a PIM. Finally,

the design is detailed even further, resulting in a PSM, which enables the

system to be implemented using a particular platform and/or programming

language.

3.7.3 ARKnowD’s Transformations: Converting Tro-

pos into AORML

As previously explained, it is necessary to provide a transformation method

to convert the notation of the models of the different viewpoints. In AR-

KnowD, this is done by mapping Tropos concepts to AORML constructs.

Table 3.2 depicts this mapping, previously presented in (Guizzardi et al.,

2005).

An agent in Tropos models an entity that has strategic goals and in-

tentionality within the system or the organizational setting. This concept

directly maps to one of the three types of agents in AORML: human, ar-

tificial or institutional agent, depending on its nature. Tropos’s plans may

indicate paths for AORML’s interaction modeling. In other words, for each

plan in a Tropos model, there can be an AOR Interaction Sequence Diagram,

modeling the interactions of the agents participating in this plan (i.e. agents

having the plan, or being connected to it by a delegation link). Capabilities

in Tropos may be seen as a set of plans and, therefore, could be mapped to

the set of interaction modeling paths, representing the agent’s plans. Anal-

ogously, resources that represent physical or information entities in Tropos

become objects according to AORML conceptualization. Additionally, in

Tropos, goal, plan and resource dependency between two agents indicate

that one agent depends on the other in order to achieve some goal, execute

MDA-inspired Transformation Method 127

Tropos Concepts AORML Constructs
agent agent
plan AOR Interaction Sequence

Diagram
capability set of AOR Interaction Se-

quence Diagram
resource object
dependency AOR Agent Diagram associ-

ation relation
delegation AOR Agent Diagram associ-

ation relation/AOR commit-
ment

resource acquisition AOR Agent Diagram associ-
ation relation/AOR commit-
ment

Table 3.2: Mapping Tropos into AORML

some plan, or obtain some resource. Because such dependency link indicates

a kind of relation between the two agents (depender and dependee), an asso-

ciation link may be depicted between these agents in an AOR Agent Diagram

(AD), typically used for information modeling. Here, we consider the differ-

ences between dependency, delegation and resource acquisition pointed out

in section 3.5. As mentioned in that section, besides involving dependency

between agents, delegation implies that the delegatee has actually agreed

to accomplish a goal or perform a task on behalf of the delegator. Thus, a

commitment is established from the delegatee regarding the delegator (or a

claim emerges from the delegator towards the delegatee). Therefore, goal

and plan delegations leads to the establishment of AORML commitments/-

claims between agents, usually depicted in interaction modeling, using one

or more types of AOR interaction diagrams. Resource acquisition is treated

analogously to goal and plan delegation, since as previously discussed in

section 3.5, these concepts have similar nature. In other words, also in the

case of resource acquisition, an association link in the AOR Agent Diagram,

and a commitment/claim link are assumed to exist between the two agents

(the acquisitor and the acquisitee).

128 The ARknowD Methodology

Note that one of the most important constructs in Tropos, the concept of

‘goal’, is not mapped into AORML. This relates to the fact that ARKnowD

applies goal modeling exclusively for requirements elicitation and analysis.

At design time, all goals have already been dealt with. Goals may have

been fulfilled or abandoned. But most commonly, goal analysis leads to the

delegation of unsolved goals to new or old actors, who are either part of the

organization or a new information system. And finally, concrete plans are

assigned to goals with the purpose of accomplishing them. Consequently,

when the design activity starts, plans should be modeled rather than goals.

As observed in table 3.2, plan modeling may be done through the use of AOR

interaction sequence diagram, which details the protocol of communication

between agents to realize a specific sequence of actions/interactions.

3.8 Working Example and Methodological

Guidelines

In this section, we present a simple example of the use of ARKnowD, with

the main purpose of illustrating the transformation between the notations

of Tropos and AORML, as described in section 3.7.3. Here, a few modeling

guidelines are also presented. More details on the use of the methodology

are presented in chapters 4 and 5.

We find the conference review process an appropriate scenario to exem-

plify ARKnowD. First, this is a well-known setting for the academic com-

munity. Furthermore, it has been used elsewhere (Dignum, 2004a), thus

enabling the comparison of our approach and notation with those of other

methodologies. Figure 3.16 presents a Tropos actor diagram, depicting the

main agents of the scenario, along with some goal and resource dependencies

between them.

The diagram of Fig. 3.16 shows that the scenario involves the participa-

tion of four agents, namely the Conference Chair, the PC Chair, the Paper

Author and the PC Member. For realizing the conference, the Conference

Chair depends on the Paper Author to submit papers that will be selected

Working Example 129

for presentation in the conference (submitting paper goal). For this papers

selection, the Conference Chair delegates to the PC Chair the responsibility of

selecting the best papers to be published in the conference proceedings (se-

lecting proceedings’ papers goal). The PC Chair and the Paper Author have a

mutual relationship. While the PC Chair wants to acquire papers submitted

by the Paper Author (submitted paper resource), the Paper Author delegates

to the PC Chair the goal of having his paper reviewed as part of the papers

selection process (having paper reviewed goal). However, the PC Chair does

not review all papers on his own. For that, he relies on PC Members (review-

ing papers goal). For accomplishing this goal, the PC Member must receive

the papers assigned to them (assigned paper resource), along with the review

form (review form resource) from the PC Chair.

PC Member

selecting

proceedings’

papers

reviewing

papers

assigned

papers

Conference

Chair

PC

Chair

review form

submitting

paper

submitted

paper

having paper

reviewed

Legend

actor

dependeedepender

goal dependency

delegateedelegator

goal delegation

acquisiteeacquisitor

resource acquisition

Paper

Author

Figure 3.16: Tropos actor diagram depicting main agents and dependencies
from the paper review scenario

Modeling is made on the level of ‘classes’ rather than on the level of

‘instances’, i.e. agents are depicted as PC Chair and Paper Author, instead

130 The ARknowD Methodology

PC Member

Conference

Chair
PC Chair

Paper

Author

Assigned

Papers

Submitted

Paper

Review Form

agent

object

directed association

relation

Legend

Figure 3.17: AOR agent diagram automaticaly generated from previous Tro-
pos actor diagram

of providing their names. This aims at making the model more general,

abstracting away from the details of one specific case. It is also apparent

from the diagram depicted in Fig. 3.16 that cardinality is not provided

in this model. For instance, there is only one PC Chair, while there are

several PC Members. However, the agent names are kept in singular form,

as representing the class of agents. Cardinality is subsequently presented in

AOR Agent Diagrams.

At this point, we can already exemplify the first transformation. Figure

3.17 depicts an AOR Agent Diagram (AD) that can be automatically gen-

erated with basis on the goal diagram of Fig. 3.16, using the transformation

rules described in table 3.2.

This figure depicts the agents and objects of the scenario, respectively

transformed from the Tropos agent and resource constructs in the actor

diagram of Fig. 3.16. Besides the scenario’s entities, the diagram also depicts

the relations between them, converted from the dependencies, delegations

and acquisitions depicted in the previously presented Tropos actor diagram.

Working Example 131

Note that the relations are directed. The direction of the relations between

agents has been directly inferred from the directions of the dependency,

delegation and acquisition links on the actor diagram. Moreover, the number

of relations between two agents is given by the number of dependencies,

delegations and acquisitions between these agents. For instance, between

PC Chair and PC Member, there are three relations, corresponding to the

two acquisitions and one delegation previously depicted in Fig. 3.16, and

following the same directions of such links. Regarding relations between

agents and objects, the direction is always the same: the relation comes

from the agents to the objects. This is due to the fact that agents are active

entities, while objects are passive. Thus, agents usually ‘use’, ‘send’, ‘receive’

objects, i.e. in this way, the relation can be more naturally nominated using

the active voice.

Although this first automatic AD is truthful to our scenario, some modifi-

cations may be necessary for enabling its best use in practice. This diagram

can then be revised and modified, given rise to the AD of Figure 3.18.

PC Member

Conference

Chair
PC Chair

Paper

Author

Paper

Review Form

sends

receives

registers review

reviews

fills-in

<<communication>>

distributes

PaperNo

Title

Status

Accepted

1

1..*

1..*

1

1 1

1

1

1

*

* *

1..* 1..*

1

1

*

1

2..3 1..*

<<communication>>
<<communication>>

relies on

Figure 3.18: Final agent diagram

In the AD of Fig. 3.18, two objects from the previous AD, namely Sub-

132 The ARknowD Methodology

mitted Paper and Assigned Paper have been merged into the Paper object.

This comes from the realization that the previously depicted resources on

the Tropos actor diagram actually referred to the same object, in two dif-

ferent states (i.e. ‘submitted’ and ‘assigned’). Hence, the two objects have

originated a single one, and such state is now given by the status attribute in

the Paper object. Besides status, other three attributes now characterize the

Paper, namely: PaperNo, which identifies the paper in the reviewing process;

Title, i.e. the title of the paper; and the true/false Accepted attribute, which

indicates whether the paper has been accepted for publication or not. In ad-

dition to that, multiple relations between agents have been reduced to one

(as a result of a choice made by the designer. In other situations, multiple re-

lations may be considered desirable, thus being maintained) and all relations

have been named. Finally, we have created a specific type of relation be-

tween the agents, named communication relation (note the communication

stereotype). Besides being related by associations, agents typically relate

through communication relations, which indicate that they interact to ac-

complish their goals. Typically, communication relations will occur among

agents that previously delegated goals or tasks, or acquired resources from

one another. This is due to the fact that for a delegation or an acquisi-

tion to occur, agent A must explicitly interact with agent B, either to ask

him/her to accomplish some goal or execute a task on his/her behalf, or to

acquire a resource controlled by agent B. Details about such interaction are

not presented in ADs, but rather in interaction diagrams.

Note also that the diagram of Fig. 3.18 presents the cardinalities of all

agents and objects of the scenario. In the case depicted here, only associ-

ation relations are necessary among the scenario’s entities. In other cases,

generalization and composition relations may be necessary (see, for instance,

the case depicted in chapter 5). In general, all UML relations may be nor-

mally used in the AOR AD. This kind of diagram allows us to depict all

entities of the scenario, presenting a comprehensive view of the domain be-

ing analyzed. The attribute of the other entities may be added as needed,

describing the relevant properties of the scenario. When designing an in-

formation system, this type of diagram is particularly useful. Rather than

Working Example 133

this one, which focuses on domain concepts, the AD is then used to depict

entities that compose the system, both in terms of agents and objects. Some

of these objects represent information entities that are later (on implemen-

tation time) converted into database tables or files to be read and written

by the agents of the system (Wagner, 2003). This kind of use for the AOR

AD is exemplified in chapter 6.

Proceeding with the analysis of the scenario, our next step is to specify

the individual perspectives of the scenario’s agents. For simplification, we

here choose to exemplify this for only one agent, namely the PC Chair.

Modeling the view of a particular agent is accomplished using the Tropos

goal diagram. Hence, while Fig. 3.16 presents an overview of the scenario,

Figure 3.19 focuses on the particular view of the PC Chair.

The goal diagram of Fig. 3.19 shows that the PC Chair has adopted the

selecting proceedings papers goal previously delegated to him by the Con-

ference Chair. At this point, we start refining this goal into sub-goals and

analyzing which actual plans may be used to accomplish them. The selecting

proceedings papers is here decomposed in two sub-goals that should both be

accomplished (AND-decomposition) by the PC Chair, i.e. the having papers

reviewed and deciding on paper’s acceptance goals. Further analyzing the hav-

ing papers reviewed goal, we note that the plan taking care of review is used

to accomplish it. Next, this plan is decomposed in two sub-plans from which

the PC Chair may choose one (OR-decomposition), namely the having paper

reviewed by three PC Members and the participating in paper review plans. If

the PC Chair decides do participate in the review of the paper, besides re-

viewing it (reviewing paper plan), he must send it to two other PC Members

(having paper reviewed by two PC Members plan) Note that there are two

softgoals that should be analyzed to understand why, at times, one choice is

made over the other. The PC Chair wants, at the same time, to keep a fair

load of work for him and the PC Members (sharing workload well softgoal)

and to guarantee that the papers are fairly reviewed (being fair softgoal). On

one hand, the sharing workload well contributes positively to the having paper

reviewed by three PC Members, since in this way, the PC Chair is sharing his

work with the PC Members. But on the other hand, the being fair softgoal

134 The ARknowD Methodology

being fair

PC

Chair

having papers

reviewed

deciding on

paper

acceptance

taking care of

reviews
comparing reviews

 and making

final decision

selecting

proceedings’

papers

review form

submitted

paper

PC

Member

AORML ISD

having paper

reviewed by three

PC Members

sharing

workload well

participating in

paper review

+

+-

-

having paper

reviewed by two

PC Members

reviewing paper

reviewing

papers

reviewing

papers

filled-in

review form

means-end positive

contribution

negative

contribution

+

Legend

plan

-

AND-decompositionactor's

perspective
OR-decompositionsoftgoal

Figure 3.19: Tropos goal diagram specifying the point of view of the PC
Chair agent

Working Example 135

contributes negatively to this plan, since by loosing control of the review,

the PC Chair is not a hundred-percent sure that the paper will be fairly

reviewed (although by knowing the PC Members and their respective exper-

tise may give an idea about this). In addition to analyzing goals and plans,

the diagram also shows the resources used in the plans, i.e. the submitted

paper and review form. Finally, the delegations to the PC Member are also

included in this diagram. For executing the having paper reviewed by three

PC Members and having paper reviewed by two PC Members plans, the PC

Chair delegates to the PC Members the goal of actually reviewing the paper.

And for performing the comparing reviews and making final decision plan, the

PC Chair must acquire from the PC Member the review form, filled in with

the data from the paper review.

The diagram of Fig. 3.19 illustrates several analysis methods of Tro-

pos, namely AND/OR-decompositions, means-end analysis and contribution

analysis. By examining it careful, we are able to present a few important

guidelines. Decompositions, for example, are just allowed between entities of

the same type. For instance, as illustrated in the diagram, one goal may be

decomposed into two goals, or one plan may be sub-divided into two plans.

Between entities of different kinds, means-end and contribution relations typ-

ically hold. However, we should note that semantically, these two relations

are different. Means-end signify that an entity is actually used to achieve

another. This is typically depicted between plans and goals (i.e. plans are

means to achieve goals) and between resource and plans or resources and

goals (i.e. resources are used in plan execution or in goal accomplishment).

Contribution between a plan and a goal, or between goals are also possible.

However, consider a plan contributing to a goal. In this case, a plan is not

considered a complete strategy for accomplishing the goal, as in the means-

end relation. Conversely, this plan partially accomplishes it, i.e. provides

some sort of contribution for that goal achievement. In general, in a means-

end relation, the plan has been tailored specifically or has the main purpose

of achieving that goal. This is not the case for contributions, where plans

that have other purposes may unadvisedly participate in goal achievement.

Another common use of contribution is on the analysis of alternatives, as

136 The ARknowD Methodology

exemplified by the two softgoals presented in the previous actor diagram. In

this case, goals may also be used instead of softgoals. For instance, a new

goal named ‘being on time’ could be included, showing that it contributes

positively for the PC Chair participation in paper review, while providing

negative contribution to completely delegating it. In this case, the entity is

a goal, and not a softgoal because it has a clear-cut satisfaction criteria. In

other words, if the paper is reviewed before the review deadline has been

expired, this goal is satisfied. And otherwise, it is not. The previous two

goals (i.e. sharing workload well and being fair) are very subjective, thus

the assessment regarding its satisfaction depends on the peculiar view of the

PC Chair. For this reason, they are softgoals.

Much controversy has surrounded the application of Tropos softgoals. In

ARKnowD, there are three possibilities for its use: a) adding a quality to

a goal; b) representing a goal for which a particular domain agent does not

have an objective criteria of assessment; or c) expressing a non-functional

requirement of a system agent. The use expressed by a) refers to an add-on

to a goal. For instance, a ‘fairly’ softgoal could be attached to the deciding

on paper acceptance goal of Fig. 3.19. This qualifies that particular goal,

reminding us that the PC Chair has this in mind while aiming at that goal.

As an alternative, we could embed the adverb in the previously defined

goal, generating the fairly deciding on paper acceptance softgoal. These are

two ways of saying the same thing. Softgoals may also resemble a goal, not

containing any specific adjective or adverb in its description. However, as

indicated in b), if there is no objective criteria for assessing its satisfaction, it

should still be represented as a softgoal. Finally, as reminded in c), softgoals

are typically used for representing non-functional requirements of a system,

such as ‘security’, ‘high performance’, and the like. In general, softgoals are

constructs more present in the initial analysis of the scenario and system re-

quirements. Their natural tendency is disappearing, or at least being related

to goals that accomplish them. Even softgoals representing non-functional

requirements shall have objective counterparts that actually realize such fea-

ture in practice. For example, as soon as a security mechanism is specified

for a system, a ‘security’ softgoal may be achieved by a goal representing

Working Example 137

this mechanism (means-end relation).

In Tropos, there is an important semantic distinction between resource

acquisition, goal delegation and plan delegation, each one having its own

particular application (analogously, this difference also holds for goal, plan

and resource dependency). A resource acquisition characterizes a situation

in which an agent A needs a specific resource owned or controlled by an

agent B in order to accomplish a goal or execute a plan. This is illustrated

by the acquisition link depicted in Fig. 3.19 between the PC Chair and

the PC Member, representing that the former needed to obtain the filled in

review form from the latter. As indicated in the diagram, this resource is

specifically needed to enable the PC Chair to execute the comparing reviews

and making final decision plan. Besides this resource acquisition link, this

diagram exemplifies the use of goal delegations. This type of delegation

refer to cases in which the accomplishment of one of the goals of agent A

is conditioned to the accomplishment of a goal of agent B. In this case,

agent A does not care about how such goal of agent B is achieved, leaving

this decision to agent B. Conversely, the situation in which agent A wants

agent B to follow a specific procedure characterizes a plan delegation. In

other words, in plan delegation, agent A (the depender) specifies how agent

B (the dependee) should act. As mentioned in section 3.5, goal and plan

delegations refer to what (Castelfranchi and Falcone, 1998) respectively calls

open and close delegation.

The previous goal diagram also includes a reminder that each of the plans

can then be specified in more details using an AOR Interaction Sequence Di-

agram (ISD) (the other two types of AOR interaction diagrams may also be

used to clarify some specific issues, as exemplified later in this chapter). The

choice for which of the plans to detail and when is the responsibility of the

analyst/designer. In any case, there is an important observation to be made

here. In Tropos, plans could be indefinitely refined. For instance, the having

paper reviewed by two PC Members plan could be refined into three sub-plans,

such as: choosing the two best PC Members to review the paper, submitting the

paper to the PC Members, reinforcing the review deadline. However, in AR-

KnowD, we advise the analyst to keep the granularity of the plans in a level

138 The ARknowD Methodology

where it can be then specified using AORML. This guideline is motivated

by our realization that the AOR interaction diagrams are more appropriate

than the Tropos goal diagram for modeling interactions. For instance, the

ISD models agent’s actions and communications events, besides also includ-

ing non-action (or environment’s) events, and commitments between agents.

As an illustration, Figure 3.20 depicts an ISD that serve both to the having

paper reviewed by two PC Members and having paper reviewed by three PC

Members plans.

Lia: PCC

deadline

Submission
selectReviewers

paperNo=21

ListPCM=[John, Beth, Rose, Ben…]

assignPaper

paperFile=smithetal.pdf

reviewFormFile=review.txt

ReviewPaper

paperFile=smithetal.pdf

reviewFormFile=review.txt

sendReviewPaper

reviewFormFile=review21.txt

ReviewPaper

ackPaperReceived

sendReviewPaper

reviewFormFile

C

D

Beth: PCM

Figure 3.20: AOR Interaction Sequence Diagram

In the diagram of Fig. 3.20, the agent’s interactions are triggered by a

non-action event (i.e. part of the environment, independent of the agents).

More specifically, the deadline for paper submission has come (dealineSub-

mission event). When Lia, the PC Chair (PCC) senses this, she starts dis-

tributing the papers to the PC Members. For reasons of space and simplicity,

only one PC Member is depicted in this diagram. However, the interaction

with other PC Members is analogous to the one exemplified here. Lia’s

first action is selecting the right reviewers for the paper, based on the area

Working Example 139

targeted by the paper and on what she knows about the expertise of the

reviewers (note that the SelectingReviewers action receives two parameters,

the paper, identified by its number, and the list of available reviewers). Hav-

ing identified that Beth is a good PC Member (PCM) to review the paper

number ‘21’, Lia submits the paper file, along with the review form to Beth

(assignPaper message with paperFile and reviewFormFile parameters). Next,

Beth acknowledges that she has received the message. At this point, Beth is

committing to review the paper assigned to her (ReviewPaper commitment).

Note the line coming from the acknowledgment message to the commit-

ment, annotated with a “C”, indicating the commitment has been “created”

by that message. For Beth, a commitment refers to a specific action to be

performed in due time, i.e. reviewing the paper. For Lia, this construct

actually represents a claim regarding a specific action that should happen in

the future. Note that the ReviewPaper commitment has a message attached

to it (i.e. a sendReviewPaper message), indicating that this commitment is

fulfilled if Beth submits a message of this kind to Lia. Otherwise, this com-

mitment is broken, giving Lia the right to sanction. Fortunately, in this case,

Beth has fulfilled her responsibility, sending back the review form, filled in

with the paper review (sendReviewPaper message sent by Beth to Lia). Note

the line coming from the message to the commitment, annotated with a “D”,

which stands for “discharge” (i.e. the message discharges the commitment).

The commitment between Lia and Beth reflects the delegation between PC

Chair and PC Member, depicted in the actor diagram of Fig. 3.16. As in-

dicated in the transformation rules of table 3.2, Tropos delegations lead to

the establishment of AOR commitments.

Although the AORML notation differs from UML, it does make use of

various UML constructs. In fact, whenever AORML does not provide ex-

tensions, UML can be normally applied. Note for example that like UML,

instances names are underlined (see the agents’ and messages’ names) while

class names are not (e.g. PCC and PCM, respectively representing the PC

Chair and PC Member agent classes). Note also that the name of the agent

instances are followed by the name of their classes (e.g. ‘Lia: PCC’). Differ-

ently from UML, though, ISDs show interactions among agents. Thus, the

140 The ARknowD Methodology

semantics of the message construct is different. In object-oriented program-

ming (and thus, in UML), a message typically refers to a method call. As

previously mentioned in section 2.4, agents have control over their behav-

ior, being requested to perform actions. Consequently, agents communicate

using speech acts, which specify a sender, a receiver, a illocutionary act or

performative (such as ‘request’, ‘inform’ and so on), and a message content

(Labrou et al., 1999). For example, the assignPaper message represents a

request, in which Lia is the sender and Beth is a receiver, and the content

is given by the parameters of the message.

The greatest innovation in this diagram is given by the possibility of

defining and controlling commitments established between two agents. Ac-

cording to the AORML author Wagner (2003, 11), “commitments and claims

are fundamental components of social interaction processes. Consequently,

a proper representation and handling of commitments and claims is vital

for automating business processes.” And indeed, other researchers on agent

organizations have acknowledged this concern, if not directly representing

commitments/claims, relying on the related deontic concepts of obligations,

rights and responsibilities (Dignum, 2004a) (Esteva et al., 2002) (Hubner

et al., 2002). In the case modeled in Fig. 3.20, the commitment serves

to regulate the relationship between two human agents. However, commit-

ments established between artificial agents are also highly useful. They may

indicate for the information system designer an important point for excep-

tion handling. In addition to that, such constructs are especially indicated

for cases in which a commitment exists between two agents developed by

different parties, as in open systems developed via Internet, for traditional

or virtual organizations. In this case, the services provided by external ven-

dors can be regulated by contracts established by the commitments between

agents. For a case in which AORML supports the design of a KM system us-

ing agents external to the organization, please refer to (Santos et al., 2005a)

and (Santos et al., 2005b).

The delegation and acquisition links earlier depicted in Tropos give rise

to commitments when the system is designed in further details. In general,

in the early stages of the analysis activity, only a flavor of the relations exist-

Working Example 141

ing among agents is captured, leaving the definition of commitments/claims

for later design activities. Then, the commitments/claims are completely

modeled, along with the actions that may fulfill them, and the applied sanc-

tions in case they are not fulfilled. The choice for different level of details,

supported by the diversity of concepts (in analysis, delegation and acquisi-

tion; in design, commitment/claim) provides the right level of abstraction

for each activity. On one hand, in the analysis, details are overlooked and

the analyst may focus on the big picture. On the other hand, during design,

the designer is able to capture all details that lead to system automation.

As it becomes apparent from Fig. 3.20, an AOR ISD models (some part

of) a prototypical instance of an interaction process. An interaction process

is a sequence of action and non-action events, performed and perceived by

agents. A protocol defines a particular sequence of action and non-action

events. For example, deadlineSubmission is a non-action event, i.e. an event

generated in the environment and perceived by the agent, Lia in this case.

Both selectReviewers and assignPaper are action events, the latter being a

communicative action event. To understand better the relations between

agents and events events (including action and non-action events), one may

refer back to the ontological distinctions discussed in section 3.5.

ISDs are generally made for several prototypical situations, to give the

analyst/designer a clear idea of the possible outcomes of the agent’s inter-

actions. So, an alternative diagram to the one previously shown could be

created, showing a case in which the PC Member fails to deliver the review

of the paper, breaking the commitment established between him and the

PC Chair. The alternative diagram could hence model the consequence of

this break of contract, both to the PC Chair and the PC Member. In that

case, the PC Chair could send a reminding message, as we will model in a

moment, using another kind of AOR diagram (Figure 3.21). And after all, if

the PC Member still fails to send the review, the PC Chair would typically

have to review the paper himself. At the same time, the PC Member could

receive a complaint message, or he could be annotated by the PC Chair as

someone not to invite for program committees of future conferences.

The ISD specifically deals with agent’s external actions and interactions,

142 The ARknowD Methodology

but it does not concern how the agents behave internally. This may be

important in different points of the analysis or design activity. AORML

provides a special diagram to model internal behavior of agents, typically

triggered by action or non-action events. This diagram is named Interaction

Pattern Diagram (IPD), illustrated in Figure 3.21.

PC Chair

<<belief>>

Paper

PC Member

deadlineReview

askPaperReview

paperNo

R1

Figure 3.21: AOR Interaction Pattern Diagram

The diagram illustrates the PC Chair’s behavior when the deadline for

reviewing papers is achieved. The deadlineReview event triggers the R1 rule,

representing the PC Chair’s reactive behavior. This rule regards the verifi-

cation if the papers have been revised or not, and may be written as shown

in table 3.3. In case the paper has not yet been reviewed (indicated by the

crossed line coming from the rule R1, the PC Chair submits a message to

the PC Member that missed to send the review for the given paper (askPa-

perReview message).

As can be noted in the diagram of fig. 3.21, a reaction rule is visualized as

a circle with incoming and outgoing arrows drawn within the agent rectan-

gle whose reaction pattern is represented (the PC Chair, in this case). Each

reaction rule has exactly one incoming arrow with a solid arrowhead, speci-

fying the triggering event type. In our case, the agent’s reaction is triggered

by the deadlineReview event. Other ordinary incoming arrows representing

state conditions (referring to corresponding instances of other entity types),

Automated Support 143

ON Event Perceive deadlineReview
IF Condition IsReviewed(?PaperNo) <> TRUE
THEN Action SEND askPaperReview(?PaperNo)

TO ?PC Member

Table 3.3: Textual description of the rule R1 representing the PC Chair’s
reactive behavior

as the arrow coming from the Paper belief object class. There are two kinds

of outgoing arrows: one indicating the performance of (either physical or

communicative) actions and one for specifying mental effects (changing be-

liefs and/or commitment) resulting from the execution of the rule. In our

example, only the former is illustrated, with the connector to the askPa-

perReview message. The latter (an arrow with a double arrowheaded) is

exemplified at (Wagner, 2005).

Besides ISDs and IPDs, AOR still offers a third possibility with the In-

teraction Frame Diagrams (IFDs). An AOR IFD gives a static view of

the possible interactions between two (types of) agents without modeling

any specific process instance. It consists of various types of communicative

action events, non-communicative action events, commitments/claims (cou-

pled with the corresponding types of action events), and non-action events

(Wagner, 2003). Figure 3.22 presents such kind of diagram, depicting all

interaction possibilities between the PC Chair and the PC Member.

The diagram of Fig. 3.22 presents all messages exchanged by the PC Chair

and PC Member in the two previous diagrams, besides the commitment

established between them in the ISD of Fig. 3.20. This summary presents

an overview of their interaction and is typically interesting between two

artificial agents, because it clearly indicates the interface between them,

facilitating coding.

3.9 Automated Support

One of the main advantages of using existing work on agent-oriented ap-

proaches comes from profiting from the already available modeling tools

144 The ARknowD Methodology

askPaperReview
paperNo

PC Member

assignPaper

paperFile

reviewFormFile

ReviewPaper

ackPaperReceived

sendReviewPaper

reviewFormFile

PC Chair

Figure 3.22: AOR Interaction Frame Diagram

developed to support such approaches. In this respect, there are several

tools available to support Tropos modeling such as:

1. GR Tool 3: provides particular support to goal analysis. In this tool,

the goals of an agent are designed, and values that refer to the satis-

faction or denial of the goals are established. Given these values, the

tool supports both qualitative and quantitative relationships between

goals, and can be used to perform two types of analysis. The first

type (forward reasoning) answers questions of the form: Given a goal

model, and assuming that certain leaf goals are fulfilled, are all root

goals fulfilled as well? The second type of analysis (backward reason-

ing) solves problems of the form: Given a goal model, find a set of leaf

goals that together fulfill all root goals.

2. T-tool 4: allows the analyst to check the consistency of his/her mod-

els, by applying a formal specification language named Formal Tro-

pos. This language supports the primitive Tropos concepts, but offers

in addition, a rich temporal specification language inspired by KAOS

3http://sesa.dit.unitn.it/goaleditor/
4http://www.dit.unitn.it/̃ft/ft tool.html

Automated Support 145

(van Lamsweerde et al., 1991). Besides verifying model’s consistency,

T-Tool allows checking whether it respects a number of desired prop-

erties. Moreover, a specification can be animated in order to give the

user immediate feedback on its implications.

3. TAOM4E 5: targets a comprehensive agent-oriented modeling environ-

ment, supporting the analysis and design of agent-oriented systems.

Its development has taken MDA recommendations into account. At

the present development stage, TAOM4E mainly supports the Tropos

modeling language. However, there have been some parallel initiatives

of integrating AORML and AUML, allowing the analyst and designer

to profit from transformations between Tropos and one of these two

UML-based modeling languages. The integration of new languages is

facilitated by the choice of developing TAOM4E as an Eclipse plug-

in. Eclipse 6 is an open source initiative that allows the integration of

different tools into a single application.

At the moment, design using AORML is made possible by using a Mi-

crosoft Visio Template 7. However, in the future, it is desirable to have a

tool dedicated to AORML, or one that includes it as a possible modeling lan-

guage. To this end, we have launched an initiative to integrate AORML in

TAOM4E. In this work, we apply the MDA transformation method described

in section 3.7.1. More specifically, we have developed the transformation be-

tween a Tropos actor diagram into an AOR Agent Diagram, following the

transformation rules depicted in table 3.2.

This work has been allowed by the use of Tefkat 8. Tefkat is a proto-

type transformation engine developed by the Distributed Technology Centre

(DSTC) of the National IT Research and Development Center in Australia.

As TAOM4E, Tefkat has been developed as an Eclipse plug-in, which facil-

itates its integration with this given agent-oriented modeling environment.

Figure 3.23 illustrates this integration.

5http://sra.itc.it/tools/taom4e/
6http://eclipse.org/
7available at http://www.informatik.tu-cottbus.de/g̃wagner/AORML/
8http://www.dstc.edu.au/Research/Projects/Pegamento/tefkat/

146 The ARknowD Methodology

ECLIPSE

TEFKATTropos Model AORML Model

Transformation Engine

Tropos Metamodel

AORML Metamodel

TAOM4E

Figure 3.23: Transformation engine

Fig. 3.23 shows that for executing a transformation, Tefkat receives as

input the metamodels of the two modeling languages (i.e. the metamodels

of the Tropos language and AORML), along with the source Tropos model

developed with the use of TAOM4E. The mapping between the two meta-

models is directly implemented using Tefkat’s declarative language. The

result is an AORML model, as indicated in Fig. 3.23. The integration

of Tefkat and TAOM4E is facilitated by their both being implemented on

top of Eclipse, thus being compatible with the Eclipse Modeling Frame-

work (EMF). Listing 3.1 gives an idea of the declarative language applied in

Tefkat.

Following, we exemplify the transformation of the Tropos actor diagram

of Fig. 3.16 into the AOR agent diagram of Fig. 3.17, using the implemented

transformation plug-in. Figure 3.24 shows the given actor model, designed

with the support of TAOM4E9.

Fig. 3.24 shows that, for executing a transformation, you right click with

the mouse on the Tropos diagram file and select Tefkat. At this point, the

transformation is automatically executed, generating the XMI file depicted

in Figure 3.25.

9As TAOM4E does not support the differentiation between delegation, dependency
and acquisition adopted in ARKnowD, we here designed the diagram using the existing
dependency construct. However, this does not result in any problem regarding our exem-
plification, as for the three types of relations, an association link is included in the AOR
AD.

Automated Support 147

Listing 3.1: Tefkat’s declarative language

TRANSFORMATION LinkingTropos2AORML: tropos -> aorml

IMPORT http :// aorml.ecore

IMPORT http :// taom4e/model/informalcore.ecore

CLASS ActorForAgent{

FActor actor;

Agent agent;

};

CLASS ResourceForObject {

FResource res;

Object obj;

};

CLASS DependencyForAssociation {

FDependency dep;

DirectedAssociation dass;

};

RULE Actor2Agent ()

FORALL Actor at

MAKE Agent ag

SET ag.name = at.name

LINKING ActorForAgent WITH actor=at , agent=ag

;

By analyzing Fig. 3.25, we note that such XMI file corresponds to the AD

of Fig. 3.17. We note that there are three agents corresponding to the agents

of the previously modeled actor diagram. Besides, the previously depicted

resources have been converted into three objects, presented in this file. And

finally, all dependencies between agents in the Tropos actor diagram have

been converted into directed associations between agents, or between an

148 The ARknowD Methodology

Figure 3.24: Actor diagram designed in TAOM4E

Figure 3.25: Transformation output file

Related Work 149

agent and an object. The visualization of the graphical AD resulting from

this file has not yet been developed in TAOM4E and remains future work.

3.10 Related Work

ARKnowD has emerged from the combination of two previous work di-

rected towards the proposal of an agent-oriented methodology supporting

KM, i.e. those of Perini et al. (2004) and Guizzardi et al. (2004a). The for-

mer supports the use of agents to model organizational processes, proposing

a methodology for analyzing KM requirements based on intentional analy-

sis, claiming that, in order to develop effective KM solutions, it is necessary

to analyze the intentional dimension of the organizational setting, i.e. the

interests, intents, and strategic relationships among the agents of the orga-

nization. Their methodology is based on the use of the i* framework (Yu,

1995), the same used as a basis for the development of the Tropos method-

ology. In our approach agent-oriented modeling is proposed as one of the

techniques supporting a more complex analysis process that leads to a de-

sign activity, not targeted in their initiative. Moreover, having adopted the

Tropos methodology allows using a more clear agent-oriented semantics of

i* elements, which enables a smooth transition to our design approach. In

(Guizzardi et al., 2004a), we have proposed the use of AORML for KM

analysis and design, in the context of collaborative learning . Although we

acknowledge the possibility of using AORML in domain modeling, we feel

that this language lacks the concepts and constructs to support require-

ments analysis. As motivated in chapter 2, supporting KM depends on a

clear understanding of the scenario, where requirements analysis comes as

an essential step. In general, modeling with AORML starts with informa-

tion modeling (like in UML class diagrams), jumping over the requirements

analysis step. A common proposal for these initial activity is the use of UML

Use Cases, however, we claim that our approach is more appropriate for fo-

cusing on goals, supported by the emphasis given by Nonaka and Takeuchi

(1995) on intention (i.e. goals) as the basis of any KM project.

150 The ARknowD Methodology

Dignum (2004a) describes two case studies of the application of OperA to

support KM scenarios. In this same work, the author claims that the needs

of such scenarios has been the main motivator for OperA’s proposal. This

stems from the recognition that, like multi-agent systems, KM environments

can be seen as distributed systems where different actors, each pursuing its

own goals, need to interact in order to achieve common targets and realize

organizational objectives. Agents are considered appropriate for being en-

dowed with social skills that comply with the needs to model the complex

interaction and negotiation processes that characterize such environments.

Moreover, agents are able to proactively change to cope with changes in this

highly unpredictable business setting. In our work, we share these opinions,

besides the use of similar concepts, such as agents, roles and goals. However,

the modeling constructs applied are completely diverse, for instance, while

OperA makes uses of scene scripts and provides a sound formal foundation

based on temporal deontic logic, our proposal is much less formal, aiming

at the support of the specification of KM environments through the use of

a graphical language.

Related work may also be found in (Loucopoulos and Kavakli, 1999),

where the authors propose a conceptual modeling approach to support en-

terprise KM. This work shares many similarities to ours. It also proposes

the analysis of the goals of the stakeholders, allowing the establishment of

dependencies and support relationships, which are similar to what Tropos

refers to as contribution. It also assigns processes as goal operationalization,

as in ARKnowD (starting by the definition of plans to fulfill goals, and then

its description with AOR interaction diagrams). However, besides goal, re-

source and activity dependency (this last one being analogous to Tropos plan

dependency), their approach models different kinds of dependency, such as

authority dependency and coordination dependency. Another divergence is

that for them, the process of acquiring and maintaining knowledge refers to

the structure and processes underlying the targeted organization. The au-

thors focus on eliciting and representing this knowledge in a sort of business

process analysis. Rather than a KM systems, the result of this analysis is the

proposal of an information system to automate the organization’s processes.

Conclusion 151

Finally, the CommonKADS methodology has been recently proposed as

a solution for KM settings (Schreiber et al., 2000). This methodology has

an agent-oriented counterpart, namely the MAS-CommonKADS, earlier de-

scribed in section 2.4.2. The CommonKADS approach consists of a re-

quirements specification activity, focused on the construction of five models:

organization, task, agent, knowledge and communication models, each one

analyzing different aspects of the system-to-be. This is followed by a design

activity, which defines the technical system specification in terms of archi-

tecture, implementation platform, software modules, representational con-

structs and computational mechanisms needed to implement the functions

specified in the knowledge and communication models. The main differen-

tiation between our approach and CommonKADS is that this methodology

has been specifically built to develop knowledge-based systems, as the expert

systems previously described in section 2.2.2. As a result of this knowledge

engineering orientation, this approach places great strength on the business

process (task and communication models) and knowledge artifacts models

(knowledge model), giving less attention to the agents executing such pro-

cesses and producing such artifacts. Agents are merely focused in the agent

model, in which scripts are built indicating the knowledge, processes, re-

sponsibilities and constraints of each agent.

3.11 Conclusion

This chapter has described the ARKnowD methodology, along with its no-

tation, activities and scenarios of applicability. For the main purpose of

supporting KM, ARKnowD combines two distinct agent-oriented software

engineering approaches, namely Tropos and AORML. For merging the two

notations, we proposed a MDA-inspired transformation method, partially

implemented in an agent-oriented CASE tool named TAOM4E, currently

under development. In this chapter, we also focused on clarifying the se-

mantics of the applied agent-oriented concepts, formalizing them with the

means of an ontology. This same ontology is used for evaluating and assist-

ing a consistent merge of the adopted notation. Furthermore, we provided

152 The ARknowD Methodology

a few modeling guidelines, supported by a working example that illustrates

the application of ARKnowD.

One of the main principles of ARKnowD is the realization that there is no

silver bullet when pursuing an agent-oriented engineering methodology, so

the best approach is combining existing work according to the given domain

or situation. This tendency for comparing and combining existing method-

ologies has been already noted in the agent community (Dam and Winikoff,

2003) (Bernon et al., 2004) (Juan et al., 2003) (Juan et al., 2004) (Sabas

et al., 2002), expressing that work in this area has matured in the past few

years. Specifically for KM scenarios, we have found the combination of Tro-

pos and AORML quite appropriate, for the reasons previously stated. The

combination of these and other approaches for the application in different

domains is an interesting work that should shed new light in this direction.

One important claim of our work is that more focus should be given to the

initial phases of system development, aiming at grasping the requirements

for an appropriate solution, both in terms of the individual perspective of the

organizational members and the overall objectives of the organization. This

is especially important in the KM context, which focuses on the effective

use of human intellectual capital, since much of human knowledge is tacit

and intangible (Nonaka and Takeuchi, 1995). Moreover, issues such as com-

munity and community’s practices (Wenger, 1998) go much beyond those

typically considered in the conception of traditional systems, and opens up

many more ways to leverage information technologies to augment human

and organizational capabilities and performances.

The methodology proposes the analysis of the goals of the system’s stake-

holders and their inter-dependencies as the initial steps towards understand-

ing the requirements for a KM system. The main strengths of this approach

can be summarized as anticipating the concerns of all participants of a given

scenario, focusing on the stakeholders’ aims while abstracting from unim-

portant issues, until the domain is well understood and the analyst is ready

to propose a solution (either by changing organizational structure, current

processes, or by applying technology). Nevertheless, a consistent methodol-

ogy should be provided, going beyond the analysis and moving towards the

Conclusion 153

design of this solution. In this sense, ARKnowD allows agent’s cognitive

concepts such as beliefs and commitments to be designed and later materi-

alized in practical elements of a system. Here, we particularly rely on a clear

model of the entities of the scenario and their relations, and the detailed de-

scription of their interaction and behavior. The adopted notation allows the

combination of agents and objects in a single model, which is particularly

suitable for KM settings. In this respect, knowledge artifacts are represented

as objects, and the stakeholders as human agents. If an information system

is proposed, the system itself can also be composed of multiple agents, which

manipulate different objects in order to mediate the processes of knowledge

creation, integration and sharing. In the end, objects that represent both

elements of the scenario and agent’s beliefs turn into information entities

materialized by database tables or XML files, for example. Meanwhile, the

modeled agents are turned into the actual code of the given system.

More can be understood about the use of ARKnowD in the following

chapters. Chapter 4 illustrates the application of the requirements analy-

sis methodology, culminating with the proposal of a recommender system

named KARe. This system is further designed in chapters 5 and 6, the for-

mer focusing on a platform independent design while the latter provides a

specification of this design for the JADE framework.

154 The ARknowD Methodology

Chapter 4

Domain and System Analysis

“Try to put well in practice what you

already know. In so doing, you will,

in good time, discover the hidden

things you now inquire about.”

Rembrandt

This chapter presents the analysis of a fictitious scenario specifically tai-

lored based on available KM literature, to serve as a case study in this

thesis. Here, we present the analysis of the scenario’s organization, eliciting

the requirements for KM support, especially focusing on the development of

a supporting Information System. The main objective of this analysis is to

show the usability of Tropos for the early stages of KM Systems develop-

ment, as proposed by ARKnowD.

The chapter is organized as follows: section 4.1 introduces the chapter;

section 4.2 presents the scenario used as our case study; section 4.3 starts

the analysis, presenting the first Tropos’s diagrams made with basis on the

case study; from section 4.4 to section 4.8 develops the remaining of our

analysis, presenting in each section, a model made with basis on a relevant

aspect of our case study, taking the perspective of the different agents of

the scenario; section 4.9 provides some reflections on how the analyzed or-

ganizational setting supports Constructivist KM; section 4.10 discusses the

requirements for a system to support Constructivist KM in the scenario, and

finally, section 4.11 presents the conclusions of this chapter.

155

156 Domain and System Analysis

4.1 Introduction

Knowledge Management scenarios are highly influenced by their human di-

mension, involving intricate relationships among different agents, along with

their personal motivations and abilities, and guided by norms and behav-

iors that are part of the organizational culture. However, most of current

KM systems are developed following a purely techno-centric view (Pumareja

et al., 2003) (Bonifacio and Bouquet, 2002), focusing on the functionality of

the system under development rather than on the real needs and wishes of

the stakeholders. Such approach is bound to fail, as it does not consider the

particularities of the environment in which the system is to be used.

As a solution to the mentioned problem, we claim that more focus should

be given to the initial phases of system development, aiming at grasping the

requirements of the system to be, by deeply understanding the structure of

the targeted organization. This analysis should consider both the overall

objectives of the organization and the individual perspective of organiza-

tion’s members. This allows the creation of a rich conceptual framework,

allowing the analyst to make a clear connection between the functional and

non-functional requirements of the system-to-be, according to relevant stake-

holders and their intentions (Giorgini et al., 2005).

Currently, a methodology for KM requirements analysis in the available

literature of both agent-oriented software engineering and organizational sci-

ence does not exist. On the agent-oriented software engineering side, most

of available methodologies for system requirements analysis are based on a

clear statement of requirements. In other words, they often apply methods

to capture requirements, such as use cases, but do not provide a means to

elicit or negotiate the requirements among the stakeholders. As argued in

section 2.6, in a complex KM scenario, it is necessary to analyze the current

situation, trying to grasp which processes should be changed to accommo-

date new KM practices and systems, besides eliciting the requirements of

the system itself. This is especially true in case we aim at supporting Con-

structivist KM, in which organizational members of different functions and

hierarchical levels should be consulted about their own goals and require-

Fictitious Scenario 157

ments. On the other hand, initiatives from the area of organizational science

are usually based on interviews and observations of agents of the different

organizational units, gathering their different points of views, critics and

suggestions. However, such studies are rarely supported by a modeling lan-

guage to allow reasoning and communication about the problem domain.

Consequently, the analysis conclusions are highly subjective and based on

the researcher’s personal experience.

The methodology exemplified here allows different analysis methods, such

as understanding trust, commitments and vulnerability in the relationships

between agents, and grasping the ’hows’ and ’whys’ of a particular choice

(Bresciani et al., 2004). For this purpose, the methodology proposes the

analysis of the goals of the system’s stakeholders and their inter-dependencies

as the initial steps towards understanding the requirements of a KM system.

The main strengths of this approach can be summarized as anticipating the

concerns of all agents involved in a given scenario, focusing on the stake-

holders’ aims while abstracting from unimportant issues, until the domain

is well understood and the analyst is ready to propose a solution (either

by changing current organization’s structure and processes, or by applying

technology). In addition to that, the adopted notation is visually rich and

accessible, besides being supported by existing modeling tools (Perini and

Susi, 2004).

The models described in this chapter are the result of an iterative process

and have been refined after several analysis cycles, as proposed in section

3.3. Different stages of this analysis have been ealier presented in (Guizzardi

et al., 2003) (Guizzardi et al., 2004b) (Guizzardi and Perini, 2005).

4.2 Knowledge Management in CoPs:

a Fictitious Scenario

In order to demonstrate our proposed methodology, we use here a ficti-

tious scenario. Although not a real case study, this scenario has been care-

fully tailored to be realistic, taking into consideration the available literature

158 Domain and System Analysis

(Dignum and van Eeden, 2003) (Gongla and Rizzuto, 2001) (Wenger, 1998)

(Orlikowski, 1992a) (Pumareja et al., 2003).

Luca starts working in BHI Software Company. He is a programmer with

10 years of experience. As a newcomer at BHI, he needs to adjust to the

organization’s work practices. This involves integrating to the project on

which he is going to work, and adapting to the work style of his working

team. Furthermore, it also includes learning about the company’s policies

and management directives.

Aiming at providing its workers with a rich environment for knowledge

sharing, BHI Management fosters the development of Communities of Prac-

tice (CoPs) across the organization. These communities are self-organizing

groups whose members share interests and goals, or perform similar tasks

within the organization. They are not necessarily from the same working

team or division, and their members are dispersed across the 10 branches

of BHI. The CoPs play an important role in allowing newcomers to get ac-

quainted with their new working environment, naturally learning about prod-

ucts, projects, specific domains, and procedures.

Luca decides to join a CoP named ‘OpenS’, which focuses on understand-

ing how open source software can be used to support the development of BHI

products. Though the communities are self-organizing systems, a special sec-

tor within the company was created to support them: the Knowledge Man-

agement Division. One of the main objectives of this division is supporting

the CoP on pursuing explicit targets related to the organization’s goals. This

allows the community members to feel important as a group for the organi-

zation at the same time that the CoP’s value is more concretely measurable

from the Management’s point of view. In addition to that, this division also

provides information about the active CoPs that are open for new member-

ship, in order to facilitate the integration of newcomers in the organization.

The Domain Stakeholders 159

4.3 The Domain Stakeholders

According to the Tropos methodology (Bresciani et al., 2004), domain anal-

ysis starts by identifying the main stakeholders, modeled as agents, with

their goals. Figure 4.1 shows an initial model where the BHI company top

management is modeled as the agent Management, depicted as a circle. The

organization has an initial softgoal relative to having the organization’s team

working well 1, which expresses how BHI intends to achieve more general

objectives such as pursuing high quality of the products and of the pro-

duction processes (pursuing high quality products/processes goal), as well as

innovation (innovating goal) by considering human resources as a main asset.

The BHI’s Knowledge Management Division and the communities within

the organization play critical roles with respect to BHI strategic goals, ac-

cording to the scenario, so they are also modeled as specific agents, namely

the KM Division agent and the CoP agent. Luca plays the role of a newcomer

in the organization (Newcomer agent), with his main goal of adjusting to the

working practices of the organization (adjusting to the organization practices

goal).

In this initial model, only the main goals of the Management and the New-

comer agents are included, indicating that our analysis concentrates on the

perspective of these two agents. Further modeling steps consist in analyzing

each agent’s goal from the point of view of the agent itself, aiming at identi-

fying the strategic dependencies and delegations between agents, i.e. those

which allow for goals achievement. Figure 4.2 shows basic goal delegations

between the scenario’s agents.

The analysis of the Management’s softgoal team working well points out

a strategic organizational goal, i.e. CoPs fostering, which is then delegated

to the Knowledge Management Division (KM Division agent). In return,

the KM Division relies on the organization’s Management to be legitimized

1The reason for modeling team working well as a softgoal is the fact that the Manage-
ment is not monitoring and measuring explicitly the team work quality. In the process of
refining the goal analysis from the point of view of the organization’s Management, the
contribution of the team working well softgoal to the other goals of this agent can become
more explicit

160 Domain and System Analysis

Legend

team working

well

pursuing high

quality products/

processes

innovating

Management

adjusting to the

organizational

practices

actor goal softgoal

KM Division

Newcomer

CoP

Figure 4.1: Initial domain model of the scenario

team working

well

providing

knowledge

getting

knowledge

having real

target

adjusting to

work

fostering CoPs

getting

legitimization

accomplishing

CoP's goals

getting

advertisements

on CoPs

gaining

incentives

innovating

pursuing high

quality products/

processes

Management

Legend

dependeedepender

goal dependency

Newcomer

KM Division

CoP

Figure 4.2: Main goal delegations between the agents of the scenario

The Domain Stakeholders 161

for playing the specific role of motivating and supporting Knowledge Man-

agement practices (legitimization getting goal). The initial Management’s

softgoal, leading to its main goal of supporting CoPs, generates all other

goal delegations between the remaining agents in the scenario.

Taking, for instance, the pair of agents Newcomer and CoP, we note that

there are goal delegations in both directions. The Newcomer delegates to the

CoP the goals of getting knowledge, gaining incentives, and adjusting to work.

On the other hand, the CoP aims at profiting from the Newcomer’s own

knowledge and experience (getting knowledge goal coming from the CoP to

the Newcomer). This mutual delegation characterizes what the i* framework

names “sustainable relationship”, i.e. a relationship in which two agents

delegate to each other one or more of their own goals (this also applies to

acquisition and dependency in both directions). Sustainable relationships

indicate that there is some kind of balance between the two agents, thus

helping them achieve individual goals. On the other hand, if there are de-

pendencies, delegations or acquisitions only from one side, this indicates a

vulnerability by this depender agent towards the dependee (Yu, 1995). Such

unbalance should be corrected in order to guarantee that both agents are

committed to each other. This is exactly the case between the KM Division

and the CoP agents. Note that while the KM Division delegates two goals to

the CoP (having real target and accomplishing CoP’s goals), the CoP does not

seem to depend on the KM Division for achieving any goal. This can result

in a lack of motivation on the part of the CoP to target the goals delegated

by the KM Division.

This kind of analysis could be crucial in a KM scenario. In our case,

for instance, we realize that while demanding the CoPs involvement with

organization’s objectives, the KM Division does not provide, as a counterpart,

any incentive to the CoP. In fact, the KM literature (Orlikowski, 1992a)

indicates that an incentive policy is essential to motivate knowledge sharing.

As a result of this preliminary analysis, the analyst may propose to the KM

Division the adoption of a method for fostering CoPs, such as the Seduce,

Engage, Support (SES) model (Dignum and van Eeden, 2003), captured in

figure 4.3.

162 Domain and System Analysis

Adopting SES

Method

Seducing

providing

infrastructure

providing

incentives

monitoring

finding time/space

and budget for

activities

providing IS

support

supporting

establishment of

real targets

marketing

clarifying

purposes

connecting

members

having real

target

Accomplishing

CoP's goals

gaining

incentives

KM Division

linking CoP's and

members'

requirements

Engaging

Supporting

having

guidanceCoP

AND-decomposition

Legend:

actor's perspective

Figure 4.3: Creating a sustainable relationship between KM Division and
CoP

The particular perspective of one or more agents can be analyzed us-

ing the three basic goal analysis techniques provided by Tropos: means-end

analysis, contribution analysis and AND/OR decomposition. This allows the

refinement of the domain model by identifying new agent dependencies, del-

egations and/or acquisitions. Figure 4.3 allows the analysis of the internal

perspective of the KM Division, which adopts the SES method (adopting SES

method goal). This initial method has been analyzed and decomposed in

sub-goals (AND-decomposition), providing us with an overview of the SES

method, which comprises three phases: seducing, engagement and support

phases (seducing, engaging and supporting goals). During the first phase, se-

duction, the context and aims of a CoP are identified and described (clarifying

purposes goal), potential members are made aware of their connections and

common interests (connecting members goal), and a “marketing campaign”

is launched, showing the added values and benefits of the CoP for the whole

organization (marketing goal). In the second phase, engagement, both com-

munity members as organization are involved in the process of setting up

the CoP. The aim is to design a community that is as closely related as

possible to the requirements and wishes of the members (linking CoP’s and

Newcomer’s Perspective 163

members’ requirements goal) and whose tasks and targets are well embedded

in the strategic priorities of the organization (supporting establishment of real

targets goal). The aim of the third phase, support, is to consolidate the CoP,

by developing CoP-specific methods and tools for the organization, manage-

ment and innovation of CoP activities (providing infrastructure goal), besides

verifying its progress (monitoring goal) and granting incentives (providing

incentives goal).

Note by the goal delegations between CoP and the KM Division that the

latter keeps its old delegations toward the former. But now, the CoP relies on

the KM Division for getting incentives to develop its activities (getting incen-

tives goal), and for having guidance throughout its lifetime (having guidance

goal). This corrects the previous unbalance between these two agents, cre-

ating a sustainable relationship between CoP and KM Division.

4.4 Focusing on the Perspective of the

Newcomer

In order to adjust to his new work environment, the newcomer counts on

his colleagues and superiors for helping him fit into organizational practices.

Suppose that the analyst wants to understand the processes the newcomer

uses for integrating into work. For that, he conducts two separate interviews:

one with the organization manager, and the other one with the newcomer.

Figure 4.4 models the result of these two interviews showing two perspec-

tives: the manager’s perspective (A) and the point of view of the newcomer

(B).

Analyzing part (A) of Fig. 4.4, we realize that with the goal of hav-

ing a prepared team, the Organization Manager worries that the Newcomer

gets quickly integrated into work (having newcomer integrated into work goal

and quickly softgoal2). The Organization Manager thinks that the means

2Softgoals are commonly used to provide a quality to the goal. In this case, for
example, “quickly”is the way the Organization Manager hopes the goal it qualifies (“having
newcomer integrated into work”) is achieved.

164 Domain and System Analysis

quickly

having prepared

team

Organization

Manager

having newcomer

integrated to work

+

+
getting

integrated into

work

quickly

integrate

having newcomer

consult project

documentation

(A)

seeking

information

having

prepared team working well
+

same level

of expertise

working

well

getting along well

with colleagues

+

+

working

well

+

high level of

expertise

being helpful

having info

about the

project

 power

avoiding being

prematurely

judged

-

understanding

problem

consulting project

documentation ++

talking to

colleague

talking to

project

manager

quickly

integrating to

work

+
-

helping

newcomer

getting

integrated to

work

being well

evaluated

(B)

having newcomer

seek tutoring from

project manager

Newcomer

Organization

Manager

Project

Manager

Newcomer

Colleague

time

means-end positive

contribution

negative

contribution

+

Legend

plan

-

resource

having expert

info about the

project
increasing

self-confidence

Figure 4.4: Newcomer’s integration into work on (A) the organization man-
ager’s perspective and on (B) the newcomer’s point of view

Newcomer’s Perspective 165

the Newcomer has to achieve this quick integration is reading the project’s

documentation and talking to the Project Manager (having newcomer con-

sult project documentation and having newcomer seek tutoring by the project

manager plans).

However, in (B), we note that instead of consulting the Project Manager,

the Newcomer talks to a Colleague (having info about the project goal dele-

gation). We can understand the reasoning behind his choice by analyzing

his perspective. The Newcomer has three plans to seek information about

the project: talking to project manager, consulting project documentation and

talking to colleague. He believes it will be quicker to integrate into work if

he talks to the Project Manager (positive contribution going from quickly in-

tegrated into work softgoal to talking to project manager plan), since he is an

expert on the project (high level of expertise resource). The Newcomer is thus

dependent on the Project Manager for knowing well about the project since

being an expert, the Project Manager is most qualified person to provide

project information (getting expert info about the project goal dependency).

Besides expertise, the Project Manager has the power (power resource) to

acquire any means the Newcomer might need to complete his work, such

as a software or a book. But on the other hand, these same high level of

expertise and power resources make the Newcomer feel pressured, thinking

that he might make a mistake and the Project Manager may prematurely

judge him as being incompetent (negative contribution going from the being

prematurely judged softgoal to the talking to project manager plan). On the

other hand, this feeling of pressure no longer exists in the case of talking to

a Colleague (double positive contribution going from the being prematurely

judged softgoal to the talking to colleague plan), because the Newcomer per-

ceives his Colleague as having the same level of expertise than him (same level

of expertise resource). Hence, we can say that the Newcomer depends on his

Colleague to gain self-confidence (increasing self-confidence goal dependency)

before thinking of interacting to the Project Manager. Analyzing the differ-

ent contributions to the Newcomer’s plans, we realize that this dependency

gains strength and leads the newcomer to talk to his Colleague. The assess-

ment of contributions (positive and negative) is a common analysis method

166 Domain and System Analysis

offered by Tropos and here, it allows us to understand the reason why the

Newcomer chose one path of action instead of another.

Part B) of this diagram also illustrates the divergence between the con-

structs of dependency and delegation in ARKnowD. As pointed out by

Castelfranchi et al. (1992), understanding the dependencies between differ-

ent agents within the organizations may provide good means for finding new

opportunities for collaborating and working more efficiently. In other words,

once noted, such dependencies may lead to future delegations. For example,

having observed this specific situation can lead the analyst to make sugges-

tions to the organization manager. The analyst may suggest that in order to

guarantee that the newcomer has correct information, the manager should

not expect the newcomer to take the initiative to talk to the project man-

ager, but have the project manager contact the newcomer instead. Another

possible recommendation is that the organization and project managers as-

sure the newcomer that making mistakes is not seen as a problem in the

organization, diminishing his feelings of pressure and uneasiness. Accept-

ing mistakes as learning opportunities rather than flaws is the right kind of

attitude toward guaranteeing a conducive environment for Knowledge Man-

agement (Lave et al., 1991).

In this diagram, we make a small extension to the semantics of the Tropos

notation. In Tropos, only concrete resources are considered in the analysis

(e.g. a tool, a document, or a piece of information). However, here we

represent intangible assets, such as personal characteristics of the project

manager and the newcomer’s colleague. The reason behind this choice is

that in a KM scenarios, it is usually very important to analyze the social

behavior and relationships among agents, for which this kind of intangible

assets may be very valuable.

Fig. 4.4 shows that the same situation may be modeled in different ways,

when seen through the eyes of different agents in the organization. This

shows the importance of interacting with agents from different hierarchical

positions in the organization, so as to have a more refined view of the work-

ing setting. As pointed out by many KM researchers (Brown and Duguid,

2000) (Wenger, 1998), the description of the work provided by managers

Joining a Community of Practice 167

or written in manuals often diverge from the actual practices within the

organization. Knowledge workers usually find several shortcuts and choose

different paths to solve a problem more efficiently or in a way they find more

reasonable (Wenger, 1998). ARKnowD can be applied to model these differ-

ences, helping the analyst to reason and communicate about inconsistencies

between the perspectives of two or more agents.

4.5 Joining a Community of Practice

In order to learn more about the organization, the newcomer takes the ini-

tiative of joining the OpenS community of practice. This is modeled in

Figure 4.5. Here, the internal goals of the Newcomer are analyzed and the

delegations towards the CoP, motivated by these goals, are identified.

not

overworking

Newcomer

adjusting to

work

getting info on

procedures and

objectives

contributing w/

competence

working

well

+
+

+

knowing who

knows what

-

contributing w/

personal

knowledge

+

keeping

control of his

assets

-

getting

personalized

help

+

+

+

getting

incentives

CoP
getting

knowledge

Figure 4.5: Newcomer’s perspective when joining a CoP

The Newcomer’s most general goal is the working well softgoal, i.e. he

aims at doing his work efficiently, while also feeling good about himself and

about the organization as a whole. In order to accomplish this, he aims

at contributing with his competence and contributing with personal knowledge,

gained in previous personal and professional experiences. Going deeper in

the analysis of this last goal, we see that two other goals contribute negatively

168 Domain and System Analysis

towards it (not overworking and keeping control of his assets goals). These

are common problems already noted by the KM community. Issues of trust

(keeping control of his assets goal) and motivation (not overworking goal)

often lead to dissatisfaction towards the traditional centralized KM systems

(Pumareja et al., 2003) (Orlikowski, 1992a). These goals have profoundly

impacted some of the choices concerning the requirements of a supporting

Information System (discussed in section 4.7).

Let us now analyze the contributing with competence goal a bit further. In

order to fully and most effectively contribute with his acquired competence,

the Newcomer needs to adjust to his work environment (adjusting to work

goal). Three goals contribute to the Newcomer’s adjusting to work, namely:

knowing who knows what, getting personalized help, and getting info on proce-

dures and objectives.In order to do adjust to work, the Newcomer needs new

knowledge about his work and about the organization as a whole, which

leads to the Newcomer’s delegation towards the CoP for getting knowledge.

As we can note in this example, relying on Tropos, the ARKnowD method-

ology allows the analysis about the reasons behind certain delegations. In

other words, the goal linked to the delegation’s outgoing arrow (here, the

adjusting to work goal) provides the ‘why’ of the delegations between two

agents (in this case, the delegation of the Newcomer towards the CoP to get

new knowledge).

4.6 Adding New Agents: Detailing the CoP

Structure

New agents can be added during the analysis in order to model specific

roles associated to an agent, or to new particular agents needed for goal

dependency and/or delegation. In Figure 4.6, inside the dotted rectangle,

we analyze the structure of the CoP agent, which can provide a solution

to the goal delegations involving the newcomer, with respect to knowledge

providing/getting.

As pointed out in the ontology developed in section 3.5, ARKnowD differ-

Detailing the CoP Structure 169

CoP

Member

finding

needed

knowledge

developing

required

capability

gaining

visibility

receiving

recognition

Provider Seeker

plays plays

Legend

role
internal

structure

plays

play-role

relationship

Figure 4.6: The internal structure of the CoP

entiates between agent and role, inspired by the definitions of i* (Yu, 1995).

An agent has a concrete, physical manifestation, such as a human being, an

organization, or a software system. A role is an abstract characterization of

the behavior of a social agent within some specialized context or domain of

endeavor. In this sense, its characteristics can be transferable to other social

agents, i.e. roles are used to represent specific behaviors independently of

who plays it.

Note that so far, we talked about specific agents, such as the Newcomer,

the Organization Manager and the CoP. In the example of Figure 4.6, we gen-

eralize the behavior of persons who provide and search for knowledge within

the CoP using two roles, namely the roles of Provider and Seeker. And in

addition to this, we say that the Member agent (representing a member of

the community) can interchangeably play these two roles (note the assign-

ment labeled as “play” going from Member to each the two roles). Roles

could have been used to represent organizational roles, like ‘manager’, for

example. But for our purposes, it is more convenient to have ‘manager’ and

other organizational roles represented as agents, assuming that for example,

170 Domain and System Analysis

a manager is always a manager (rigid entity). This gives us the chance to

use roles to represent entities that are antirigid in our model, such as those

of Provider and Seeker. In other words, a Provider at one moment can be the

Seeker in a future opportunity.

Besides making this differentiation, the diagram shows the mutual depen-

dency between the Seeker and Provider roles. The Seeker depends on the

Provider for the goals of finding the knowledge he needs for a specific task

(finding needed knowledge goal), and of developing new capabilities (develop-

ing required capability goal). On the other hand, the Provider depends on the

Seeker to gain visibility (gaining visibility goal) and to help the Seeker to de-

velop new capabilities, so receiving recognition (receiving recognition goal).

Note that members of the community of practice may play both roles in

different situations, generating a community of peers. Another interesting

point is that as soon as a Newcomer participates in the CoP, he will play the

two Member roles.

Considering the objectives a CoP is designed for will assure the satisfac-

tion of the previously identified goal delegations between the Newcomer and

the CoP. But could the Newcomer rely on the CoP to get personalized help

when having a problem to solve (getting personalized help goal)? Should CoP

goals and structure be modified?

4.7 Identifying the Needs for the KARe Sys-

tem Agent

In order to fulfill some of the goals of the Newcomer, the CoP structure has to

be revised and needs to accommodate new agents (roles), having the ability

to satisfy them. Figure 4.7 depicts a model showing that the CoP delegates

some of the goals of the Newcomer to an agent named KARe.

The CoP delegates to KARe the goals of:

a) letting users keep control of their knowledge assets (directly derived

from the Newcomer’s keeping control of his assets goal). The KARe

Identifying the Needs for a System Agent 171

CoP

KARe

letting users keep

control of assets

while sharing

allowing

members to ask

and answer

questions

knowing who

knows what

providing

members with

personalized help

Figure 4.7: Goal delegations from the CoP to the KARe System

system should allow each user to keep their assets in their own PCs,

while making them available to other community members;

b) allowing members to ask and answer questions through messages ex-

change. This feature is important because some of the Newcomer’s

questions may not be answered by reading artifacts. Sometimes, it

could be necessary to communicate with CoP members for building

the solution to a specific problem, as in Fig. 4.4, where the Newcomer

talks to his Colleague to gather project information. KARe should me-

diate this interaction, by finding the best person to answer to a specific

knowledge request;

c) informing who knows what (directly derived from the Newcomer’s goal

of knowing who knows what);

d) providing members with personalized help, by considering their per-

sonal characteristics when providing knowledge (straightly obtained

from the goal of getting personalized help by the Newcomer).

The four goals listed above become KARe’s main requirements. In this

chapter, we exemplify the elicitation of system requirements with an anal-

ysis of a simple case study involving the adjustment of a newcomer into

work. However, we acknowledge that, in real cases, this elicitation may be

motivated by the analysis of much more complex scenarios.

172 Domain and System Analysis

By analyzing the four goals from the point of view of the system agents,

we can identify more detailed requirements, and analyze alternative solu-

tions. For instance, we may consider satisfying KARe’s goals by defining

new artifacts to be produced along the organization’s processes or we may

look for what KM enabling technology can be considered to design a better

solution. A detailed proposal of the KARe system, along with its design

model can be found on chapter 5.

4.8 Adjusting the Evaluation Method

After the Newcomer had been participating for some time in the activities of

the CoP, a subsequent analysis showed that his participation had not been

very high, and this could be explained by the evaluation method adopted

by BHI. Figure 4.8 (A) captures this problem.

being well-

evaluated

participating in

CoP activities

+

charging hours

charging hours to

clients’ projects

charging hours to

CoP acctivities

+

contributing with

personal

knowledge

Newcomer

being well-

evaluated

Newcomer

participating in

CoP activities

-

charging hours to

clients’ projects

(B)(A)

Figure 4.8: Performance evaluation affecting participation in CoPs

Fig. 4.8 shows that the evaluation of the Newcomer’s performance was

based on the hours he charged on clients’ projects in which he was involved.

So, in order to be well-evaluated, the Newcomer needed to spent as much

time as he could on tasks related to his usual programmer’s tasks (charging

hours to clients’ projects plan), which did not give him much time to get

Constructivist KM Analysis 173

involved in CoP activities (negative contribution towards the participating in

CoP activities goal). This is a common problem noticed in the KM literature:

although the organization makes some effort to support KM, its evaluation

methods are not accordingly adjusted to accommodate activities related to

knowledge creation and sharing (Orlikowski, 1992a). In order to solve this

problem, a new evaluation method is proposed, as shows Figure 4.8 (B).

In the diagram of Fig. 4.8 (B), in order to be well evaluated, the Newcomer

must charge his hours to clients’ projects (charging hours to clients’ projects

plan), but also to CoP activities (charging hours to CoP activities plan).

And besides, he should contribute with his personal knowledge (contributing

with personal knowledge goal). These additions contribute positively to his

participation in CoP activities (positive contribution to participating in CoP

activities goal). So, by adopting this new evaluation method, the organization

is motivating the participation on CoP activities to grow.

Note that while the charging of hours follows an established procedure

(this can be understood by the semantics of the plan construct, used to

represent it), the personal knowledge contribution (represented as a goal)

can be achieved in different ways, to be decided by the Newcomer. For

instance, he could provide contributions to his peers by using the KARe

system, emailing his colleagues, meeting them in person, etc.

4.9 The Conducted Analysis in Light of

Constructivist KM

Looking back at the analysis conducted in this chapter, we realize many

points of connection to the previous reflections regarding the principles of

Constructivist KM (or building blocks, as we called them in section 2.5. In

fact, these building blocks may be used as a checklist to guide the analyst

in understanding which level of support the organization currently provides

to Constructivist KM. Next to this, these principles may also provide in-

sights about how to improve KM processes within the organization, either

by changing organizational structures and processes, or by adopting techno-

174 Domain and System Analysis

logical and non-technological tools.

First of all, the way the analysis has been carried out, based in the point

of view of several actors within the organization is compliant to the auton-

omy building block, previously emphasized as essential to bring motivation

to employees regarding the organization’s KM practices. As in top-down

approaches commonly adopted in current KM initiatives, the analysis con-

siders the strategic intents of the organization’s top management. However,

besides that, it also takes a bottom-up perspective, bringing into evidence

the needs and wants of the knowledge holders, i.e. individuals working in

the several points of action of the organization.

Other elements of the analysis point out that autonomy is a valued prin-

ciple in the illustrated organizational setting. Profiting from ARKnowD’s

analysis techniques, the existence of more or less goal delegations compared

to plan delegations among agents leads the analyst to draw conclusions re-

garding the choices of the members of the organization regarding autonomy.

As mentioned before, goal delegation represents situations in which the de-

cision of the strategy behind goal accomplishment is left to the delegatee.

Conversely, in cases modeled with plan delegation, the delegator prescribes

the way the delegated goal should be achieved. As an illustration, in part

A) of Fig. 4.4, the top manager lets the newcomer decide how to become

more familiar with the project in which he is going to work (goal delegation),

rather than prescribing to him a specific way to proceed.

The autonomy building block is also considered when the organization

decides to support the emergence of CoPs. These communities usually grant

their members with autonomy to choose ‘when’, ‘how’ and ‘with whom’ to

exchange information and expertise. In addition to that, CoPs create a

rich context for knowledge creation and dissemination. In this context, new

knowledge is produced and disseminated not simply to fill in an existing

knowledge base, but with the purpose of fulfilling a need of the community.

These needs are generally conditioned by the targets defined according to

organizational strategies.

Moreover, crossing divisions and even branches of the organization, CoPs

KARe System’s Requirements 175

also motivates non-hierarchical knowledge sharing. In other words, partici-

pation in CoPs’ activities independent on organizational roles and positions.

Although these positions exist and are important for carrying out specific

tasks and responsibilities within the organization, the analysis shows that in

the case of knowledge exchange, everyone is considered equal. This uniform

treatment is reflected in the representation of two roles (knowledge provider

and knowledge seeker) to be assumed by every CoP member, despite their

organizational roles and positions.

The adopted technological solution also supports the Constructivist KM

building blocks. This is more specifically focused on the subsequent section,

which discusses the requirements elicited to the KARe system as a result of

the conducted analysis.

4.10 Focusing Closer on the KARe System

Requirements

Section 4.7 focuses on the elicitation of the main requirements of the KARe

system, based on the needs and wants of the domain stakeholders already

captured in previous models. The resulting set of requirements is presented

in Table 4.1.

KARe Requirements
R1: Allowing users to keep control of their knowledge as-
sets while sharing knowledge
R2: Supporting members to ask and answer question
R3: Providing information on experts regarding particular
knowledge
R4: Providing personalized help to the users

Table 4.1: The requirements elicited for the KARe system

Aiming at providing support to Constructivist KM, KARe adopts a peer-

to-peer model. Peer-to-peer networks provide at the same time, a framework

for social interaction and for physical and meaningful artifacts access and

exchange. What makes peer-to-peer different than the traditional client-

176 Domain and System Analysis

server approach is the fact that there is no central server, i.e. each node of

the network can play the role of either a client or a server (Tiwana, 2003).

In this way, by adopting a peer-to-peer model, KARe directly supports R1

listed above, allowing each member to keep their knowledge assets stored in

their computer while making them available to others in the network. This

complies with the principle of autonomy characterizing Constructivist KM.

Figure 4.9 illustrates this model.

Legend

Julia Mike

Joey

Tom

MessageDocument Tacit Knowledge

Figure 4.9: Peer-to-peer knowledge sharing

Fig. 4.9 shows four people, each one locally managing their own knowl-

edge assets. In KARe, we classify knowledge artifacts into documents and

messages. A document is considered as a “finished product” regarding a

specific subject. Documents can have various formats (text, audio, video,

etc.) and be of different types (manual, report, speech, etc.). A message, on

the other hand, refers to a communication construct, used to mediate dialog

and discussion. The system motivates social interaction by supporting the

members of the organization to ask and answer questions (requirement R2

listed above). In this way, the members of KARe’s peer-to-peer community

exchange the knowledge artifacts maintained in their personal collection. In

other words, KARe aims at imitating the social processes commonly applied

when one has a particular problem to solve during one’s daily work. Instead

KARe System’s Requirements 177

of consulting manuals and documentations, the worker is motivated to get

involved in a dialog with workmates, which may lead him/her to grasp more

than procedures, the values and tacit strategies adopted in the organiza-

tion. Fig. 4.9 also acknowledges the presence of tacit knowledge, which is

hoped to be explicitated throughout social interactions, especially with the

exchange of questions and answers (i.e. messages).

The peer-to-peer model reflects the non-existence of a central power or any

kind of authority controlling the peers interactions and exchanges. In this

way, despite of hierarchical roles or positions, all peers are seen as providers

and seekers of knowledge. In other words, this model complies with the

Constructivist KM building block of providing a non-hierarchical knowledge

sharing structure. The distributed nature of peer-to-peer networks reflect

the naturally distributed character of knowledge and expertise within an

organization. Knowledge and expertise exists sparsely in the (internally un-

derstood and shared) members’ understanding of each other’s knowledge,

and in the (hidden) behavioral and cognitive similarities among individual

users. In this respect, KARe aims at uncovering and making salient some

of these hidden characteristics so that users might become more aware of

the existing organizational knowledge and its corresponding CoPs. This di-

rectly regard requirements R3 and R4 listed above. Both the information

about experts in particular subjects, and the personalized help are obtained

through the adoption of user models. In KARe, user models describe per-

sonal characteristics of a user and how he/she views the other peers in the

peer-to-peer network.

In an organizational setting, employees can interact as peers of a big peer-

to-peer network and naturally group themselves in communities. Besides,

such network can even transcend organization boarders, allowing external

actors or other organizations to take part in this knowledge sharing space.

The dynamic environment created as a result of such knowledge exchange

enables the emergence of constructive perturbations that lead people to seek

self-improvement by asking questions, and reflect about their knowledge

when answering to incoming knowledge requests.

178 Domain and System Analysis

4.11 Conclusions

This chapter has started illustrating the application of the ARKnowD meth-

odology, focusing on the initial activities of the development cycle, namely

the requirements elicitation and analysis activities.

We used a fictitious scenario especially elaborated based on KM literature

for the purposes of this exemplification. With this scenario, we tried to

illustrate some of the main problems involving KM settings, such as: lack of

trust and motivation to provide knowledge, the non existence of an incentive

policy towards knowledge sharing, and an inadequate employee performance

evaluation criteria for organizations supporting KM. In addition to that, we

made sure all constructs of the Tropos notation, as well as techniques applied

in this methodology, have been properly illustrated throughout the chapter.

Table 4.2 summarizes the illustration of the Tropos’s constructs and analysis

techniques throughout the chapter.

Our analysis shows how the Tropos methodology can be effectively used to

elicit the requirements of KM support, in terms of processes and by adopt-

ing a supporting Information System. Two examples of process changes

suggested by the analysis have been captured in the diagrams of Figs. 4.3

and 4.8. The former models the adoption of a CoP supporting method by

the KM Division, in order to balance the delegations between the CoP and

the KM Division, in a way that both gain from their collaboration. The

latter focuses on the adjustment of the organization’s evaluation method in

order to motivate the involvement of the organization’s members with CoP

activities. Moreover, our analysis supports the elicitation of requirements

for a KM system, named KARe (depicted in Fig. 4.7). A detailed proposal

of the KARe system, along with its design model can be found on chapter 5,

while its implementation is discussed on chapter 6.

At the end of this analysis step, a review activity is conducted, aiming

at verifying the achievement of the main objectives of domain analysis and

requirements elicitation. In other words, we focus on the understanding of

critical dependencies and delegations between domain agents for individ-

ual goal achievement and the identification of needs for new or alternative

C
o
n
clu

sio
n
s

179

Construct / Analysis Technique Figure

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

agent x x x x x x x x

goal x x x x x x x x

dependency x x

delegation x x x x x

softgoal x x x x x

plan x x

resource x

role x

decomposition x x

means-end analysis x x

contribution analysis x x x

agent’s perspective analysis x x x x

agent’s internal structure analysis x

comparing different perspectives x

Table 4.2: Summary of Tropos’s constructs and analysis techniques illustrated in this chapter

180 Domain and System Analysis

agents, dependencies and delegations to manage unsatisfied goals. Decisions

on what to focus on in the following steps and on which alternative solutions

to be refined in an architectural design, are taken at this point.

For instance, at that point of the analysis of the case study we choose

to go ahead analyzing a KM solution resting on the adoption of a KM sys-

tem based on peer-to-peer technology: the KARe system, introduced in the

diagram of Fig. 4.7 . This choice complies with the Newcomer’s wish to

keep control of his knowledge assets, besides resting on considerations about

the effectiveness of this technological solution in favoring knowledge shar-

ing through questions and answers. Moreover, the analysis of our scenario

pointed out the relevance of managing tacit knowledge, i.e. the knowledge

which is confined in people’s mind, and to transform it from tacit to explicit

and back to tacit, completing the knowledge creating cycle as proposed in

(Nonaka and Takeuchi, 1995). Section 4.10 presented a flavor on how the

elicited requirements are explored, but a more detailed description and the

design of the KARe system are the subject of the next chapter.

Chapter 5

The KARe System

“The important thing is not to stop questioning.

Curiosity has its own reason for existing.”

Albert Einstein

In this chapter, we present the proposal and design Knowledgeable Agent

for Recommendations (KARe). KARe is a socially aware recommender sys-

tem that tries to simulate the social behavior of a community of practice

(CoP) within a peer-to-peer network. It maintains the characteristics of

CoP members in user models and seeks for knowledge on their behalf, ac-

cording to their needs and interests.

Besides a comprehensive description of the system, this chapter presents

its design, applying ARKnowD. First, Tropos is used to model the archi-

tecture of the system and later, AORML is applied in the system’s detailed

design. Maintaining the consistency throughout the design, we make a con-

version between the notations of Tropos and AORML, according to the

transformation rules presented in chapter 3.

This chapter is organized as follows: section 5.1 introduces this chapter,

describing how KARe models the users and support them reactively and

proactively; sections 5.2 and 5.3 present KARe’s design. The former focuses

on the high level architectural design while the latter deals with the detailed

design of the system; section 5.4 presents an initiative to integrate KARe

with other two related tools, providing a comprehensive toolbox to support

181

182 The KARe System

KM; section 5.5 discusses some related work, based on an innovative layered

model that facilitates the classification of KM systems and their comparison

to KARe; and finally, section 5.6 presents the conclusions of this chapter.

5.1 Introduction

As an organization develops, its knowledge and expertise becomes increas-

ingly distributed. While promoting the growth of specialized knowledge

communities, this process also makes discovering relevant knowledge from

these communities more difficult. A KM system should support the natu-

ral organizational processes that promote knowledge creation and exchange,

thus supporting the members of the organization to find relevant knowledge.

With this in mind, in the previous chapter, we analyzed the problem of a

newcomer who wanted to join a particular community within the organiza-

tion where he works. As a result of this analysis, we have elicited a few

requirements for a system that addresses such problem.

The elicited requirements have been presented and briefly discussed in

section 4.10. As pointed out in that section, KARe aims at fulfilling these

requirements by following a peer-to-peer model, which directly resembles the

distributed nature of knowledge and expertise within the organization.

Instead of requiring the user’s to seek a knowledge base through keywords,

the system supports the user on sharing knowledge through questioning and

answering. According to Freire and Fagundez (1992) (refer to section 2.3.4),

a question is the first knowledge sparkle, as questioning is a means to ex-

plicitate one’s personal knowledge, starting with a reflection on what one

knows and what one does not know. In addition to that, questioning pro-

vides an opportunity for others to express their points of view, many times

tacit. Allowing peers to ask and answer questions, KARe creates a rich envi-

ronment for social interactions, already recognized as a driving force behind

knowledge creation and innovation. Throughout time, knowledge is stored

by the community members in their local repositories, allowing KARe to re-

trieve knowledge to the user, both reactively (at user request) or proactivelly

Introduction 183

(autonomously identifying user’s needs).

Seeking at providing personalized assistant to the users, helping them

find the best responders to solve their doubts, KARe relies on describing

each user by the means of a user model, that captures cognitive and social

characteristics of the user.

The following three sub-sections provide more details about the system’s

user modeling feature, and clarify KARe’s reactive and proactive support.

They contribute to the clear understanding on how KARe fulfills the previ-

ously elicited requirements, leading the way to consistent architectural and

detailed system design.

5.1.1 User Modeling in KARe

User models are composed of different user properties that define their char-

acteristics and preferences, which are particular for each system and/or pur-

pose. For instance, in e-learning systems, user models are used to determine

learners’ progress in a course, and their performance level regarding spe-

cific knowledge or skill. In e-commerce, user models indicate preferences

and needs of users regarding particular products. For KM, user models add

flexibility to the system. They often support the system to find experts to

answer to specific knowledge requests, and to deliver knowledge according

to particularities of the users or of the situations in which they are involved.

Central to this discussion is the decision regarding which properties should

be considered in the user model. When people share their knowledge with

others, they are not just sharing information; they are also sharing cultural

and social references (Mantovani, 1996). Likewise, when people seek knowl-

edge, they are not just seeking information; they are seeking information

grounded in, and carrying different meanings to different social communi-

ties. By considering the available literature and carefully examining several

KM cases, we have elaborated KARe’s user model (also termed peer model)

based on the characteristics listed in Table 5.1.

The KM literature points out interest and expertise on particular topics

as two of the main characteristics that differentiate organizational members

184 The KARe System

User Model Properties

Personal
Characteristics

Interaction
Characteristics

Physical
Context

interest trustability location
expertise collaborative level time
role reliability
availability
presentation preferences

Table 5.1: Relevant user characteristics when searching for knowledge

(Brown and Duguid, 2000) (Hansen et al., 1999) (Quinn et al., 1996). In

KARe, both interest and expertise are inferred from the user’s knowledge

artifacts, organized by the means of personal taxonomies. More details about

how such taxonomies support the user on organizing and sharing knowledge

may be found in the subsequent section.

Knowing that someone is an expert on particular topic may not be suffi-

cient to indicate him/her as an appropriate knowledge provider. In addition

to that, some indication on how well he/she may respond to a query in that

topic should also be considered. This we call reliability or expertise level.

In KARe, when receiving an answer to a given help request, the seeker is

allowed to evaluate the provider’s contribution, giving it a grade that is then

stored in his (the seeker’s) PM. An average of the available grades is then

used to select and rank providers. Note that each seeker has its own evalua-

tion of the providers, meaning that the same person may be evaluated with

different reliability levels by different people. This follows our approach to

imitate reality, in which people have different and individual views of one

another.

Along with reliability, two other factors are described in terms of the

peer’s interactions with one another (thus listed in column 2 of Table 5.1).

Trust, also referred as reputation or confidence measure, is claimed in the

KM literature as one of the most important factors considered when peo-

ple share knowledge (Castelfranchi, 2004) (Esfandiari and Chandrasekharan,

2001). In KARe, the peers may indicate those who they trust through a

Introduction 185

list of friends. The remaining interaction feature is the collaborative level,

measured throughout the providers’ interactions in the system. If a peer

receives questions and does not reply to them, this has a negative impact

on his collaborative level, regarding a particular seeker. The opposite hap-

pens if a peer promptly replies to incoming requests. By explicitly modeling

the peers’ collaborative level in KARe, we hope to avoid (or at least di-

minish) the existence of “free riders”, i.e. peers that seek for contributions

but never contribute to others (Vassileva, 2002). To guarantee that absent

users will not suffer losses in collaborative level, KARe also considers user’s

availability. In other words, KARe allows the peers to indicate how much

time they can spend on answering help requests. This way, those peers who

have higher availability are more contacted than the others. Besides that,

peers may provide information regarding vacation or sick leaves.

Besides the personal characteristics of expertise and interest, KARe relies

on the role as an important characteristic to drive the choice for particular

knowledge artifacts, and/or users to answer to knowledge requests. Peers

may play different roles within an organization and community. This refers

to organizational roles, such as accountant, secretary, and consultant. But

it can also include specific roles played in a CoP, such as CoP leader and

CoP web-master. According to research in CoPs, the role(s) a knowledge

provider plays within a community may help to determine whether or not

the information received is structured at an appropriate level (Lave et al.,

1991). As noted in the analysis of the scenario presented in chapter 4 (re-

fer to section 4.4), people tend to feel more comfortable when exchanging

knowledge with others with similar roles.

The physical context (Chen and Kotz, 2000) (column 3 of table 5.1) is

also taken into account when KARe is searching for knowledge. Here, time

and location are explored. KARe considers for instance, if a user is at home

or at school, and the time of the day to determine the choice for specific

artifacts (e.g. if it is late at night, the user might prefer a shorter or less

complex text to read). Section 6.5.2 of next chapter describes a mobile

KARe prototype that uses peer locations to select him/her as a responder

for pending questions.

186 The KARe System

5.1.2 Using KARe to Ask and Answer Questions

KARe is a multi-agent system that recommends artifacts to meet the user

needs based on questioning and answering, simulating the natural social

processes involved in knowledge sharing. When we have a real problem at

work, we often rely on asking a question to a colleague with whom we share

the office, or to someone who is considered an expert in a subject related

to our problem. The process of questioning and answering stimulates the

pursuit for innovation. This can prevent the crystallization of knowledge and

procedures, impelling people to seek for new and better ways of acting and

performing. Moreover, this process forces both questioner and responder to

find a common interpretative schema, by putting themselves in each other’s

position and trying to grasp each of their individual and tacit view on the

discussed topic. In order to provide personalized assistant, helping the users

to select the best respondents to solve their doubts, KARe relies on user

models as described in the previous sub-section, capturing user’s cognitive

and social characteristics.

Asking and answering to questions is an interactive process. The ques-

tioner finds a suitable colleague and poses his doubt. Usually, this choice

is based on the questioner’s assumption that his colleague knows about the

targeted subject, besides feelings of trust and comfort towards the responder

(this choice is illustrated in the analysis of the Newcomer’s scenario, in the

Tropos diagram of Fig. 4.4, chapter 4). The responder, on his turn, is likely

to help the questioner, provided that the trust between them is mutual. He

will then use his own language and knowledge to provide the answer to the

questioner. Besides solving the problem at hand, having the answer gives

the questioner the ability to share this new knowledge with other colleagues.

Fig 5.1 illustrates the process of asking and answering questions in three

steps. In (A), a questioner named Mike has a specific doubt concerning

one of his tasks. He finds a colleague who has the answer to help him and

poses his question, receiving the answer subsequently. In (B), Mike applies

the received answer in order to solve his problem. Now, keeping the answer

to himself, Mike is able to help others in need, as shown in (C) where he

Introduction 187

provides the answer to a colleague who had a similar doubt.

Q

?

(B) Problem Solving

(A) Seeking for Knowledge

(C) Sharing Knowledge

A

A

A

A

A

Q

Figure 5.1: Process of (A) acquiring knowledge, (B) using it for solving a
specific problem and (C) socializing it with others

In KARe, we simulate this process using a peer-to-peer infrastructure.

Each user (a peer) is able to organize his knowledge assets (typically, working

documents) according to his own domain conceptualization, using a taxon-

omy. A taxonomy is a concept hierarchy that describes the user’s view of a

specific domain, also named context in (Bonifacio et al., 2004). After defin-

ing meaningful concepts and their inter-relationships the user distributes

the artifacts according to the “matching” concepts in the hierarchy. Figure

5.2 shows the organization of the personal knowledge assets of three users,

connected by a peer-to-peer network.

KARe allows the user to pose natural language questions, searching in

other peers’ collection for answers among their stored artifacts. The answer

can be found among documents or messages sent by other peers responding

previous similar questions. In case no response is found, the system indicates

a suitable peer (based on peer’s user models) to provide the answer to that

specific question. Having received a suitable answer from the indicated peer,

188 The KARe System

the questioner now has this answer classified in his own taxonomy and stored

in his system, so that he can be consulted by others regarding the same

subject. These processes are illustrated in Figures 5.2 and 5.3.

Q

A

Health insurance

Client Competitors

Premium Standard

Figure 5.2: A human peer responds to a question when no answer is found
by the system

Fig. 5.2 shows how KARe deals with the situation previously depicted in

Fig. 5.1 (A), i.e. a user submits a question (now contextualized by a concept

in his own taxonomy). The system submits the question to a peer whose

user model seems to describe a suitable responder. The user answers to

the question submitting it through the system to the questioner. Note that

the contextualization of the question may help the responder to understand

more about the questioner’s doubt. For instance, suppose that this is an

insurance company and that Mike’s question is “What measures should we

take when a client is late with his payment for the acquired services?”. Some

information is not expressed in Mike’s question, for instance: what kind of

service is he talking about? However, this information is explicitated by

the contextualization of the question, since it is classified under “Health

insurance-Clients-Premium” in Mike’s taxonomy. Besides clarifying the type

Introduction 189

Q
Q A

Q A

Health insurance

Client Competitors

Premium Standard

Figure 5.3: The system retrieves an answer previously stored by another
peer

of service (“health insurance”), this contextualization also indicates the type

of client Mike is reffering to (in this case, “premium”), which may have some

impact in the responder’s answer.

In Fig. 5.3, Mike has already received the answer to his question, which

was then classified under the concept he had previously indicated. In this

way, Mike now stores the answer for his own future reference and for sharing

it with peers in need. The figure shows the case in which Joey requests

similar information, by posing a question similar to Mike’s. In this case,

Mike does not need to personally answer to the question, as the system

has already found it in his computer, subsequently sending it to Joey. This

illustrates KARe’s handling of the situation early depicted in Fig. 5.1 (C).

On the other hand, if the questioner is not satisfied with the answer,

the system provides him with a list of possible responders. Responders

are chosen based on their user model, which comprehends the following

characteristics (refer to previous sub-section): expertise, reliability, trust,

role, collaborative level, and availability.

By storing the same question/answer pair in different peers, we chose to

replicate to increase the possibility that this knowledge will remain in the or-

ganization even when some members are not available anymore. Considering

190 The KARe System

that these peers will be involved in continuous interactions, the knowledge

considered “useful” to the community (i.e. information and documents they

need for their daily work) is likely to remain in the community, even if the

members that originally owned them leave. This complies to the principle of

redundancy, presented by Nonaka and Takeuchi (1995) as one of the condi-

tions for knowledge creation and disseminatio within organizations (for more

on this topic, refer to section 2.2.4).

5.1.3 Proactive Knowledge Delivery

Besides this reactive type of search, KARe also searches for knowledge ar-

tifacts in a proactive fashion, in three distinct ways: a) periodic search; b)

solving pending requests; and c) suggesting interaction with similar users.

In the periodic search, KARe recurrently searches the distributed peers

for new knowledge artifacts of interest for his/her associated peer. The

period of search is previously configured by the peer, and it can be also

changed throughout time. When searching for knowledge, KARe takes into

account the following information from the user model, described in the

previous section: seeker’s interest, provider’s expertise, seeker’s trust on

certain providers, and seeker’s role. In addition to that, the system is aware

of location and time, besides user’s preference, in order to present the content

in the most appealing format.

In solving pending requests, the system tries to solve previous knowledge

requests that have not yet been satisfied. There may be situations in which

a request results in no satisfactory response, either because no knowledge

has been found among the other peers, or because the founded documents

or incoming answers have not satisfactorily solved the questioner’s doubt.

In this case, this request becomes pending, and the system keeps track of

new incoming knowledge artifacts that may suffice that particular knowledge

need, delivering them to the questioner in a later date.

Finally, when noticing similarity regarding interest, expertise and the

remaining factors considered in the user model, the system may provide a

peer with a list with similar users to which he/she may interact.

Architectural Design 191

5.2 Architectural Design

At this point, we would like to go back to the modeling activities we have

started in chapter 4. The next activity is the system’s architectural design.

During this activity, new agents emerge as sub-agents of the KARe system.

These new agents are the choice of the system designer to fulfill the require-

ments captured in the requirements analysis activity. The designer usually

bases her/his choice of architecture on previous experience or on available

architectural patterns, previously used for similar purposes.

According to ARKnowD, besides supporting requirements analysis, Tro-

pos is also applied for the architectural design, providing a smooth transition

from the problem level analysis to the system level analysis. It enables us to

easily trace back the functionalities of the system to the goals of the domain

agents. In more details, the main advantages this approach gives us are:

a) allowing us to analyze which of the system’s general goals are adopted

by each of the internal agents; and b) supporting us on capturing the goal

delegations1 between the system’s internal agents. For detailing the design

of the system (refer to section 5.3), we finally make the transformation pro-

posed in chapter 3, proceeding the design with the use of AORML (Wagner,

2003), which can support information modeling, besides capturing agents’

behavior and interaction.

The analysis of the requirements of the KARe system leads to the iden-

tification of a possible structure of the system agent in terms of sub-agents,

i.e. the system global architecture is identified through delegation of main

system goals to internal sub-agents. In this way, KARe’s architecture is

composed of three main sub-agents:

• Artifact Manager (AM): maintains the personal knowledge repository of

the peer. This means maintaining the taxonomies created by the user,

besides allowing him to include or exclude items from the repository.

1If during analysis, it is possible to capture dependencies between agents that are
uncommunicated and even unknown, in the design of system agents, dependencies are
rare. Instead, relations between agents at the level of architectural design are typically
captured by the use of delegations.

192 The KARe System

• Peer Assistant (PA): each peer has an associated Peer Assistant (PA)

that represents him/her in the network of peers. This agent is in charge

of searching for knowledge on peer’s behalf, reactively and proactively,

and in a personalized way.

• Broker: matches peers as adequate knowledge sources for specific re-

quests, and supports proactive search by matching similar peers. Note

that while the other two agents compose the peer-to-peer infrastruc-

ture, the Broker is a centralized entity.

The emerging structure is that of an agent organization (or more generally

of a peer-to-peer system), whose high level architecture may be modeled in

terms of goal delegations, according to Tropos, as in the example depicted

in Figure 5.4.

finding

similar peers

providing p2p

knowledge

repository

indicating

best peers

KARe

providing info on

who knows whatallowing peers to

ask and answer

questions

providing peers

with personalized

help

allowing peers to

keep control of

their assets

making proactive

recommendations

providing

question/answer

service

Peer

Assistant

Artifact

Manager
Broker

Figure 5.4: Tropos diagram showing the high level architecture of the KARe
system

KARe is depicted on the top of Fig. 5.4, delegating the four goals previ-

ously adopted by the system on behalf of the CoP (refer to chapter 4, Fig.

4.7) to the three agents described above: the AM the PA, and the Broker.

KARe delegates to the AM, the goal of allowing users to keep control

of their assets. In order to fulfill this goal, the AM maintains a peer-to-

Architectural Design 193

peer knowledge repository (providing p2p knowledge repository goal). In this

way, the users are allowed to organize their knowledge assets locally, while

exchanging knowledge with other peers

The PA is responsible for the goals of: providing peers with personalized help

and allowing peers to ask and answer questions. These goals materialize, by the

use of technological solutions, two important goals delegated by the KARe

system and are further refined, providing us with more details regarding

the proposed architecture. To achieve these two main goals, the PA provides

the user with proactive recommendations (making proactive recommendations

goal) and supports a question and answer service (providing question & answer

service goal).

The last goal of KARe, namely the providing info on who knows what

goal, is finally delegated to the Broker. Hence, the Broker is responsible for

indicating who are the best users to answer to a certain knowledge request

(indicating best peers goal). Or, in case of a proactive search, the Broker

indicates who are the peers similar in regards to a specific user (finding

similar peers goal).

The existence of a central entity, namely the Broker, indicates that KARe

does not adopt a pure peer-to-peer model (like Gnutella, for example), but is

rather designed following the hybrid model, also adopted by Napster (Oram,

2001). The idea behind this choice is allowing more flexible support to the

users of the system, facilitating the access to the user models containing

personal and social features of the system peers. Figure 5.5 shows a possible

peer-to-peer network topology where all six network nodes contain an AM

and a PA, but only two nodes contain Brokers. Limitations of safety and

performance of the system (in case a network node containing the Broker

is down or overloaded) may be overcome by replicating the Broker in other

nodes of the network.

Fig. 5.4 presents a first architectural model, which may be subsequently

refined, allowing us to understand better by which means the goals are

achieved, besides detailing the delegation relations between the architec-

ture’s agents. Figure 5.6 presents such refinements.

194 The KARe System

PA

AM

PA

AM

PA

AM

PA

AM

B

PA

AM

B

PA

AM

Figure 5.5: The distribution of agents within the nodes of KARe’s peer-to-
peer network

Note that here, the agent’s internal goals have been transformed into

plans, indicating that there is a specific strategy (or more precisely, an al-

gorithm) to achieve these goals. At this point, such strategies are only

stated, being completely clarified only during detailed design. For example,

the AM’s goal of providing p2p knowledge repository has been refined into

two different plans: maintaining taxonomies and organizing knowledge arti-

facts. In other words, this agent allows the user to create and update their

taxonomies, besides organizing their knowledge artifacts, classifying them

on taxonomic concepts. In addition to plans, resources have also been in-

cluded in the model. For instance, in order to maintain the taxonomies, the

AM needs access to the taxonomies themselves, included here as a resource,

which is further indicated as a means for the execution of the maintaining

taxonomies plan.

Besides including plans and resources, the model of Fig. 5.6 shows the

delegations between the system’s agents, and between the user (CoPMem-

ber) and the system’s agents. Three of the PA’s plans require the use of

knowledge artifacts, namely the request for explanation, question response and

providing proactive recommendation plans. In order to acquire such resource,

this agent relies on the AM. In addition to that, the PA’s question response

A
rch

ite
ctu

ra
l
D

e
sig

n
195

maintaining

peer models

providing p2p

knowledge

repository

indicating

best peers

providing

question/answer

service
request for

explanation

Artifact

Manager

Broker

question

response

providing

knowledge

getting

knowledge

CoP

Member

knowledge

artifacts
taxonomies

maintaining

taxonomies

organizing

knowledge

artifacts

making proactive

recommendations

providing proactive

recommendations

knowledge

artifacts

knowledge

artifacts

knowledge

artifacts

creating and

updating peer

models

ranking peers

finding similar

peers

indicating

best peers

+

+

finding similar

peers

comparing

peers

Peer

Assistant

accessing

peer model

accessing

peer model

F
igu

re
5.6:

T
rop

os
d
iagram

sh
ow

in
g

K
A

R
e’s

h
igh

level
arch

itectu
re

in
m

ore
d
etails

196 The KARe System

and providing proactive recommendation require that the Broker fulfills the

goals of respective finding similar peers and indicating best peers. On the

other hand, the Broker depends on the PA for accessing peer models, which

contain important characteristics to enable the Broker to carry out the plans

associated to the PA’s delegated goals.

5.3 Detailed Design

At this point, we begin detailing our system design, starting with an un-

derstanding of the internal structure of our system (i.e. information model-

ing). At this point, we should then convert the Tropos diagram that details

the system’s architecture (Fig. 5.6) into an AORML model, following AR-

KnowD’s transformation rules presented in table 3.2 on chapter 3. This

results in a draft AOR Agent Diagram (AD), as shown in Figure 5.7

classified

by

CoP Member

BrokerPeer Assistant

Knowledge

Artifacts

Artifact Manager

Taxonomy

Figure 5.7: Draft Agent Diagram

The AD of Fig. 5.7 shows us the following transformations:

• Tropos agents become AOR agents ;

• Tropos resources become AOR objects ;

• Tropos delegations become AOR association relations.

The directions of the association relations between agents are inferred

from the direction of the delegations between agents. And in case of re-

Detailed Design 197

lations between agents and objects, it is assumed that the relation comes

from the agent to the object (reflecting agent’s activeness and object’s pas-

siveness). Note that such diagram can be obtained automatically by simply

transforming the notation elements from one language to the other. Having

this draft diagram at hand, the system designer is now able to refine it,

which results in two distinct diagrams: a conceptual diagram and a design

diagram, respectively exhibited in Figures 5.8 and 5.9.

<<communication>>

Document * 1owns

*

classified

by

Message

questioner

responder

1

1

*

replies

*1

trustsPeer
<<human>>

*

*

Broker

<<artificial>>

Peer Assistant

<<artificial>>

recommends
1

1

<<institutional>>
CoP

CoP Member
<<human>>

1

Knowledge

Artifacts

Artifact Manager

<<artificial>>

organizes

1

*

classifies

*

11 1

1

<<communication>>
*

represented

by

1

*

Concept

Taxonomy

maintains

1

* / 1 <<…...>>

generalization/

specialization

relation

ternary

relation
cardinality stereotype

indicating agent

type

Legend

composition

relation

/attribute

derived

attribute

<<communication>>

communication

relation

Figure 5.8: Conceptual Agent Diagram

A conceptual AOR Agent Diagram (AD) enables the understanding of the

conceptual relations between the agents, being them system (artificial) or

domain (human and institutional) agents. In this diagram, the type of agent

is depicted using UML2 stereotypes. In this way, we may differentiate the

2since AORML extends UML, it allows the designer to make use of the UML elements
every time AORML does not offer an alternative solution.

198 The KARe System

artificial (ArtifactManager, PeerAssistant and Broker), human (CoPMember,

Peer) and institutional (CoP) agents of the scenario. The Peer agent has

been added, providing more generality to the system. Now, a Peer can

be a community member or not, allowing all organizational members to

participate in system’s interactions, regardless of their affiliation to specific

communities. Besides Peer, the CoP institutional agent has been added, to

show that a CoPMember is part of a CoP 3. The relations between agents

(and between agents and objects), previously inferred from the delegations

between agents in Tropos, are now named, and cardinalities have been added,

giving a more clear reading of how the agents and objects relate. Agents are

connected through a special kind of relation: the communication relation.

As already mentioned in section 3.8, if such type of relation exists between

two agents, it determines that these two agents communicate to achieve their

goals. The details of their communication is made clear in the interaction

diagrams that we present in section 5.3.1.

Some objects and relations have also been added to refine the draft AD.

For example, a specialization relation has been added to show that knowledge

artifact can be of one of the two types of artifacts previously described in

section 4.10: document and message. The relation of these artifacts to the

Peer have been added: Peer owns documents while sends or receives messages

(ternary relation). The introduction of a concept object indicates that the

taxonomy is composed of a set of concepts, and that each concept classifies

a number of knowledge artifacts.

Although the conceptual model enables a clear understanding of the sys-

tem to be and their relations with domain agents, the designer needs a more

refined version of the conceptual AD, focusing solely on the internal struc-

ture of the system, and abstracting away from details of the domain. This

is finally achieved with the diagram of Fig. 5.9.

The design model only contains elements that compose the system, while

all domain agents are left out. Note that, in this diagram, a Peer has been

3in AORML, as in UML, composition can be shown either by the use of the composition
relation (a diamond-ended relation), or by internalization. Here we chose the latter, as
we think it is more clear.

Detailed Design 199

KARe

Question Answer

Message

* 1
owns

classified

by

questioner

responder

1

*

replies
* 1

Broker

<<artificial>>

Peer Assistant

<<artificial>>

recommends

1

Artifact Manager

<<artificial>>

classifies

11

<<belief>>

Peer

*

1

<<communication>>

Knowledge

Artifact

1

*

Concept

Taxonomy

organizes

*

1Document

title

type

creator

date-creation

sender

date

subject

idArtifact

pathFile role

/expertise

/interest

collabLevel

reliability

trust

*

*
<<communication>>

Pending

Question

<<belief>>

Peer
<<belief>>

Peer

<<artificial>>

Figure 5.9: Design Agent Diagram

objectified. This is due to the fact that the Peer agent is not part of the

system, but the information about him/her that is relevant for the system

(i.e. the user model) should be. The Peer object models the belief that

the artificial agents have about the Peer agents. In addition to this, we

have specialized the Message into Question and Answer, refining it into the

two types of messages we may have in the system. Besides, the Question

is further refined into Pending Question. This helps us model the proactive

functionality of the system to retrieve answers to questions that have not

been satisfactorily answered before.

5.3.1 Behavior and Interaction Modeling

Having understood how the information is structured, the design proceeds

with the elaboration of AORML interaction diagrams to model agents’ in-

ternal behavior and interaction with other agents. In other words, these

diagrams allow the designer to understand better the specific functioning of

200 The KARe System

the agents in response to incoming messages and/or events.

Interaction modeling generally starts with the elaboration of a few AOR

Interaction Sequence Diagrams (ISDs), detailing agent’s interactions to per-

form each of the system’s functionalities. Instead of modeling general sit-

uations, ISDs depict prototypical situations, in which different possibilities

regarding the same functionality may be explored. This has shown to be

very useful in enabling a clear understanding of the system. Usually, the

designer reasons about how functionalities are accomplished while elaborat-

ing this kind of diagram. It is common to refine them several times before a

final version can be achieved. Moreover, they can also lead to modifications

in the information structure, modeled with the use of ADs. After under-

standing how the agents interact with each other, AOR Interaction Pattern

Diagrams (IPDs) allow the designer to detail the internal behavior of some

agents. And finally, AOR Interaction Frame Diagrams (IFDs) abstract from

modeling specific situations, showing solely the types of messages exchanged

between two agents. This is helpful for clarifying the interface between two

agents.

At this point, we turn back to our Tropos architectural model of Fig. 5.6,

which informs us which situations we should target on interaction modeling.

These situations are given by the plans adopted by each of the system agents.

Plans in Tropos “represent, at an abstract level, a way of doing something”

(Bresciani et al., 2004, pag. 207). In other words, a plan is an algorithm or

a set of steps that lead an agent to accomplish certain goals. Here, plans

function as UML use cases. AOR ISDs are able to model the set of steps

that lead to a plan execution, showing how agents’ interact and eventually

perform actions and respond to events of the environment. According to

Fig. 5.6, we should model the following plans: maintaining taxonomies,

organizing knowledge artifacts, creating and updating peer models, request

for explanation, question response, providing proactive recommendations,

ranking peers and comparing peers.

Detailed Design 201

Maintaining Taxonomies

Figure 5.10 shows the Peer interaction with the AM on the creation of part

of the taxonomy of Fig. 5.2 of section 5.1.2.

Mike's AM:

Artifact Model

Mike: Peer

createTaxonomy

title=”Health Insurance

Taxonomy”

1

inclConceptTax

taxID= 12

parent=null

concept=”Health Insurance”

2

inclConceptTax

taxID= 12

parent=”Health Insurance”

concept="Client”

3

4

5

newTaxonomy

taxID=12

title="Health Insurance”

newConcept

taxID=12

parent=null

concept=”Health Insurance”

6

newConcept

taxID=12

parent=”Health Insurance”

concept="Client”

Figure 5.10: The Peer creates a personal taxonomy

The ISD of Fig. 5.10 depicts Mike creating a new taxonomy named

“Health Insurance” (createTaxonomy message) and including two concepts

on this new taxonomy (inclConceptTax): “Health Insurance” as the top con-

cept, and “Client” as its child. Similar messages may be sent in order to

include other concepts. On the right side of the diagram, a few actions of the

AM in response to the incoming messages are depicted. The AM creates a

new taxonomy (newTaxonomy action event), providing it with an associated

id (taxID), which identifies the taxonomy in the system. Then, following’s

Mike’s messages requesting the inclusion of concepts in the given taxonomy,

the AM performs newConcept actions, creating the concept.

Similar ISDs can be sketched for updating or deleting concepts in a tax-

onomy. However, as these diagrams would be redundant with relation to

the already presented diagram in Fig. 5.10, we choose not to include them

here. As aforementioned, the ISDs depict prototypical situations, instead

202 The KARe System

of generalizing the interactions4. This supports the designer on reasoning

about different possibilities before generalizations can be made (usually in

the IPDs and IFDs).

Organizing Knowledge Artifacts

The AM supports the system user on organizing his/her knowledge assets

in his/her local knowledge repository. An example of how a new document

can be included in the user’s knowledge base is presented in Figure 5.11.

Interesting in this diagram is the presence of the metadata that qualifies the

given document. To avoid too much repetition, we refrain ourselves from

providing the ISDs for updating metadata or deleting document, as they

would be very similar to the one here presented.

Mike submits a new document to be included in his local knowledge base

(includeDocument message). He indicates in which taxonomy (taxID param-

eter) and under which concept (concept parameter) the document should be

classified. Besides this, other document metadata are included as parame-

ters: title, type, creator, and date-of-creation. And finally, the document file

is also submitted. The AM includes the new document in Mike’s knowledge

repository by performing the newDocument action. Besides the submitted

metadata, the AM creates an identifier for the submitted document (idDoc

parameter).

Creating and Updating Peer Models

The PA is responsible for building the peer model. For this, it needs the user

to provide some personal data and to customize some system options. Figure

5.12 shows the creation of the peer model, through interaction between the

user and his PA, when he starts using KARe.

To start using KARe, the user needs to provide a few initial data to

his/her PA. Fig. 5.12 shows that Mike first submits his personal data (per-

sonalData message), including name, role, room number etc. Next to this,

4underlying agent’s names and message labels signify that these are instances instead
of classes.

D
e
ta

ile
d

D
e
sig

n
203

Mike's AM:

Artifact Model

Mike: Peer

addDocument
1

2

newDocument

taxID=12

concept= “Health Insurance”

title=”New Health Insurance Programs”

type=”report”

creator=”Luc Dell”

date-of-creation=”24-05-2005"

file=new-programs.doc

docID=432

taxID=12

concept= “Health Insurance”

title=”New Health Insurance Programs”

type=”report”

creator=”Luc Dell”

date-of-creation=”24-05-2005"

file=new-programs.doc

F
igu

re
5.11:

T
h
e

P
eer

in
clu

d
es

a
n
ew

d
o
cu

m
en

t
in

h
is

p
erson

al
k
n
ow

led
ge

b
ase

204 The KARe System

personalData

Mike's PA:

Peer Assistant

name = “Smith”

first_name = “Mike”

role = "Consultant”

phone_ext = “6754”

room = “54”

indicTrust

lstTrust = [“Mark”,”Julia”]

period = “7”

treshold=”70”

configBrokerPermission

expertise=”yes”

listTrust=”yes”

role=”yes”

configPrefRespondent

expertise=”2"

reliability=”3"

trust=”1"

role=”4"

collabLevel=”5"

Mike: Peer

1

2

3

4

5

configProactiveRec

Figure 5.12: The Peer configures his personal information

Detailed Design 205

Mike indicates who are his trusted colleagues (indicTrust message), in this

case: Mark and Julia. Then, Mike configures some system options, namely:

a) the period he would like his PA to provide him with proactive recom-

mendations (period parameter of the configProactiveRec message), given in

number of days (e.g. Mike wants to receive proactive recommendations ev-

ery 7 days); b) the threshold that should be used by the PA to find similar

artifacts during the proactive periodic searches (treshold parameter of the

configProactiveRec message), given in percentage (e.g. here, 70%); c) permis-

sion to the Broker to access his personal information (configBrokerPermission

message). In this case, Mike allows the Broker to view all his personal infor-

mation, i.e. his expertise, his list of trust and his role; and d) the order of

characteristics based in which the Broker should choose peers to respond to

his requests (configPrefRespondent message). Here, Mike indicates he wants

this choice to be based in the following order: trust, expertise, reliability,

role and collaborative level.

After its initial creation, the peer model is then constantly updated,

throughout Mike’s interaction with other peers. This especially regards some

of the interaction features (refer to Fig. 5.9). From these, only trust infor-

mation is directly gathered from the user. The information on how reliable

the user finds the other peers, and how collaborative they are in respect to

the user can only be gathered throughout peer interaction (see Fig. 5.16 for

examples of how reliability and collaborative level are updated in the Peer

Model).

Request for Explanation

For reasons of space and clarity, the interaction modeling regarding this plan

has been divided in four diagrams, depicted from Figure 5.13 to Figure 5.16.

These diagrams depict the situation previously referred to in Figure 5.2 of

section 5.1.2, i.e. Mike asks a question that is responded by an appropriate

peer selected by the system.

The interaction starts when Mike submits a question to his associated PA

(requestExplanation message), properly classificating the message in a con-

206
T

h
e

K
A

R
e

S
y
ste

m

:PA

searchAnswer

2

Mike: Peer Mike's PA:

Peer Assistant

Anna's PA:

Peer Assistant

provideDocument

 "
docs:{doc34,doc66}

John's PA:

Peer Assistant

provideExplanation

 "
question=”My client…"

answer=”Usually,..."

provideDocument

 "peer=Anna

docs:{doc34,doc66}

3

4

provideExplanation

 "

7

5

requestExplanation

question="What to do in case

a client...?"

taxID=12

class =”Health Ins.->

Client->Premium”

peer=John

question=”My client…"

answer=”Usually,..."

evaluateDocument

doc=doc34

eval=[5,unsatisfied]

evaluateExplanation

expl=”Usually…"

eval=[3,unsatisfied]

6

9

doc=doc66

eval=[5,unsatisfied]

evaluateDocument 8

keyQuest=[client,payment,

late,...]

vectorC=[(key1,freq1),...]

peer=Anna

eval=5

updReliabPeer

peer=Anna

eval=5

updReliabPeer

peer=John

eval=3

updReliabPeer

1

10

11

12

F
igu

re
5.13:

M
ike

su
b
m

its
a

q
u
estion

to
h
is

asso
ciated

P
A

Detailed Design 207

cept of one of his taxonomies (note the taxID and class parameters in the re-

questExplanation message). In response to Mike’s message, Mike’s PA broad-

casts a message to the other PAs in the network (searchAnswer message),

searching for a response to Mike’s question. Following, two PAs respond to

Mike’s PA search request. At this point, the Peers have not been directly

contacted. Instead, only their personal repositories have been searched for

an appropriate answer by their associated PAs. Maria’s PA submits two doc-

uments that seem related to Mike’s question (provideDocument message from

Mary’s PA), while John’s PA sends a previously question that is similar to

Mike’s doubt (provideExplanation message from John’s PA). Having received

the incoming artifacts, Mike’s PA imediately forwards them to Mike, expect-

ing to fulfill his knowledge needs (provideDocument and provideExplanation

messages from Mike’s PA). However, Mike is not satisfied. He submits poor

ratings to all received artifacts, also indicating that he is unsatisfied with

the response (note the eval parameter in the evaluateDocument and evaluate-

Explanation messages). These poor evaluations will trigger the interactions

depicted in Figure 5.14. Before going forward, Mike’s PA updates in Mike’s

peer model the reliability of the two Peers who sent knowledge artifacts (up-

dReliabPeer action events). Unfortunatelly, in this case, their reliability will

diminish due to Mike’s unsatisfaction regarding the received artifacts.

The PA must now identify a specific peer for whom to submit Mike’s

question. For that, the PA relies on the Broker, for which it submits a find-

BestResponder message. Note that in this message, Mike’s PA provides some

useful information to the Broker, namely the experts list already inferred

from the previous step (i.e. the experts in the question’s related subject are

those whose PAs sent automatic responses), authorized information from

Mike’s peer model, and the order of importance of the responder character-

istics according to Mike (the given numbers indicates that Mike would like

the responder to be chosen based on the order: trust, expertise, reliability,

role and collaborative level. This information has been configured in the

initial information exchange between Mike and his PA, as depicted in the

diagram of Fig. 5.12). The Broker acknowledges that it has received the

request from Mike’s PA.

208 The KARe System

Mike's PA:

Peer Assistant

Broker A:

Broker

findBestResponder 13

14

findBestResponder

ackReqResponder

15

16
answerBestResponder

listResp=[Julia, Anna,

Ben, Mark]

ListExperts=[Anna,John]

PM=altPM

prefRespond=[2,3,1,4,5]

answerBestResponder

listResp

C

D

Figure 5.14: Mike’s PA searches for a Peer to directly respond to Mike’s
doubt

Detailed Design 209

At this point, a commitment is established between these two agents.

Note that such commitment can be inferred from the indicating best peers

delegation between the PA agent and the Broker agent in the Tropos archi-

tectural model of Fig. 5.6. As seen in section 3.5, delegation in ARKnowD

indicates at the same time, dependency from the delegator (the PA) towards

the delegatee (the Broker) and a commitment from the delegatee towards

the delegator. The counterpart of a commitment is a claim. Thus, we can

also say that the PA has a claim towards the Broker. Commitments are im-

portant deontic construct, which establish a kind of contract between two

agents. As can be noted in Fig. 5.14, a commitment has one or more argu-

ments as possible outcomes of a given commitment. In this case, the Broker

is forced to submit an answerBestResponder message, containing a list of ap-

propriate peers to answer to Mike’s request. Any other response (or lack of

response) would mean that the commitment was not fulfilled, which should

lead to some sanction regarding the committed agent. For the designer, this

indicates an important trigger for exception handling in the system. An al-

ternative for the non-fulfillment of the commitment should be then provided

in the system’s code. However, in the case at hand, the Broker fulfills the

given commitment, by sending the list of best peers to Mike’s PA.

The diagram in Fig. 5.14 accomplishes one of the Broker’s plan, namelly

the ranking peers plan. The relation between the PA’s request explanation

plan and this plan is also clear in the Tropos diagram of Fig. 5.6. First,

the delegation coming from the request explanation plan to the Broker agent

generates the indicating best peers goal, which is then refined to the ranking

peers plan internally to the Broker. In comparison with UML use cases, the

relation between these two plans (request explanation and ranking peers) is

similar to the relation between two use cases A and B, use case A ‘using’

use case B.

Figure 5.15 proceeds with a sequence of interactions in which Mike’s PA

tries to find a response to Mike’s doubt by contacting one of the peers in

the best peer lists submitted by the Broker.

First, Mike’s PA shows him the list of peers sorted by the Broker, so that

Mike can choose one or more to send his question (possibleResponders mes-

210
T

h
e

K
A

R
e

S
y
ste

m

Mike: Peer Mike's PA:

Peer Assistant

Julia’s PA:

Peer Assistant

Julia: Peer

possibleResponders

listResp=[Julia, Anna,

Ben, Mark]

17

reqExplanationPeers

listResp=[Julia]

18

provideAnswer

Content

provideHelp

notAvailable

x

ackReqExplanation

requestDirectExplanation
19

Question="What to do...?"

Class =”Health Ins.->…"

20

21

22

Question="What to do...?"

Class =”Health Ins.->…"

requestExplanation

23

24

provideAnswer

Peer=”Julia”

Content="In this case,

you should..."

30

provideAnswer

Peer=”Julia”

Content="In this case,

you should..."

provideAnswer

Peer=”Julia”

Content="In this case,

you should..."

C

D

F
igu

re
5.15:

A
P
eer

resp
on

d
s

to
M

ike’s
q
u
estion

Detailed Design 211

sage). Mike selects ‘Julia’ from the list (requestExplanationPeers message).

Then, Mike’s PA submits the question to Julia’s PA, so that Julia can be

directly contacted for the answer (requestDirectExplanation message). At the

moment an acknowledgement is sent from Julia’s PA to Mike’s PA, a com-

mitment from the former towards the latter is created. This commitment

is important to guarantee a positive outcome from their interaction despite

its asynchrony. Julia’s PA submits the question to Julia (requestExplanation

message). However, as stated in this commitment, even if Julia does not

respond to the question, Mike’s PA receives a message (in this case, the

notAvailable message). Nevertheless, in the case at hand, Julia did submit

an answer (provideAnswer message from Julia), which is then forwarded by

Julia’s PA to Mike’s PA. Finally, Mike receives the expected answer from his

associated PA. Figure 5.16 presents the final message exchange to end this

plan’s execution.

Mike: Peer Mike's PA:

Peer Assistant

expl="In his case, ..."

eval=[“9”,satisfied]

evaluateExplanation

25

Mike's AM:

Artifact Manager

storeArtifact

concept=”Health Ins.->…"

question=”What to do...”

answer="In this case, ..."

eval= “9”

26

peer=”Julia”

eval= “9”

27
updReliabPeer

peer=”Julia”

28
incCollabLevelPeer

Figure 5.16: The question and answer are stored in Mike’s knowledge repos-
itory

Having received an answer to his question, Mike analysis if it is satis-

factory and provides his PA with an evaluation (evaluateExplanation mes-

212 The KARe System

sage). By verifying that Mike is satisfied with the provided explanation,

Mike’s PA submits it to Mike’s AM (storeArtifact message), so that question

and answer can be stored in Mike’s personal repository, being from now on

available for consultation by other peers with similar doubts. Note by the

concept parameter in the storeArtifact message that the question and answer

pair will be stored in the concept Mike selected to submit his question in

the first place. Besides, the PA adjusts the Julia’s reliability (updReliabPeer

message), and increases her collaborative level (incCollabLevelPeer message)

concerning Mike.

The reliability of a peer pj according to the opinion of a peer pi is cal-

culated as the means of all evaluations provided by pi about documents or

messages submitted by pj. Let n be the number of times pi has evaluated

an artifact from pj, and gk the grade given by pi to an artifact received from

pj. Then, pj’s reliability is given by a simple means calculation, as shown in

Formula 5.1.

reliability(pj/pi) =

∑n
k=1 gk

n
(5.1)

The collaborative level is the measure of how many direct responses a

peer has given to another. Being n the number of times pj responds to a

direct contact from pi, the formula for increasing the collaborative level of

pj in respect to pi is given by Equation 5.2. Being m the number of times pj

does not respond to a direct contact from pi, the formula for decreasing the

collaborative level of pj in respect to pi is given by Equation 5.3. In other

words, the initial collaborative level of all peers is 0 (zero). Throughout

time, this number is updated, becoming positive or negative, according to

the peer’s respose. Thus if the collaborative level of pj is increased regarding

pi (due to an incoming response from pj to pi), this means that 1 is added to

the previous collaborative level of pj in pi’s peer model. Contrarily, if when

directly contacted, pj does not provide any answer to pi, pj’s collaborative

level is decreased in pi’s peer model, meaning that 1 is subtracted from pj’s

previous collaborative level.

Detailed Design 213

incCollabLevel(pj/pi) =
n

∑

k=1

1 (5.2)

decCollabLevel(pj/pi) =
m

∑

k=1

−1 (5.3)

Figure 5.17 exhibits the situation in which a second user (Joey) submits

to his PA, a question similar to Mike’s. This case has been illustrated in

Fig. 5.3 of section 5.1.2. No detailed description should be necessary for the

Understanding the diagram of Fig. 5.17 as it follows the same logics of the

previous diagrams described for this plan.

Question Response

In order to illustrate the question response plan, we choose to use an AOR

Interaction Pattern Diagram (IPD), as the ISD for this situation is too simple

and the IPD provides us with more information to support the system design.

The IPD presents, besides the agent interaction, the internal behavior of

one of the agents. Note that this diagram is built for the general case,

not presenting particularities of singular situations as the ISD, but instead

covering all possible outcomes of the given interaction. Figure 5.18 presents

the IPD for the question response plan.

The diagram of Fig. 5.18 depicts the PA submitting a question to the

AM (searchAnswer message)5. The AM’s reactive response to the incoming

message is represented by the R1 rule, detailed in Table 5.2.

When receiving the message, the AM looks among the user’s Artifact

Models for a response that satisfies the incoming question. If the artifact

is found, the AM forwards it to the PA (in case it is a previous question,

the question and answer pair is forwarded in a provideExplanation message;

contrarily, documents are submitted in provideDocument messages). In case

no artifact is found, a noAvailableArtifact message is issued.

5the parameters of this message, namely keyQuest and vectorC refer to the approach
used by KARe for artifact retrieval. More details on this approach are given in chapter 6

214
T

h
e

K
A

R
e

S
y
ste

m

:PA

checkIfExistingQuestion

2

Joey: Peer Joey’s PA:

Peer Assistant

Mike's PA:

Peer Assistant

provideExplanation

 "
question=”What to do…"

answer=”In this case,..."provideExplanation

 "

4

5

3

requestExplanation

1

question=”I have a doubt..."

class =”Policies->Payment-

>Health Insurance”

peer=Mike,Julia

question=”What to…"

answer=”In this,..."

Joye's AM:

Artifact Manager

evaluateExplanation

expl=”In this…"

eval=[7.5,satisfied]

storeArtifact

concept=”Policies->…"

question=”I have a...”

answer="In this case, ..."

eval= “7.5”

6

keyQuest=[doubt,client,...]

vect=[(key1,freq1)]

peer=Mike

eval=7.5

updReliabPeer

F
igu

re
5.17:

J
o
ey

’s
q
u
estion

fi
n
d
s

a
q
u
ick

an
sw

er

Detailed Design 215

searchAnswer

Peer Assistant Artifact Manager

KeyQuestion,VectConc
R1

<<belief>>

Artifact Model

provideDocument

Docs

provideExplanation

Question, Answer

noAvailableArtifact

Figure 5.18: The AM’s internal behavior when the answer to a question is
requested by the PA

ON Event RECEIVE searchAnswer (?keyQuest,
?vectorC) FROM ?PeerAssistant

IF Condition SimilarArtifact(?keyQuest,?vectorC,
ArtifactModel(?Document))

THEN Action SEND provideDocu-
ment(?Document) TO ?PeerAs-
sistant

ELSE IF Condition Similar(?keyQuest,?vectorC, Arti-
factModel(?Question))

THEN Action SEND provideExplana-
tion(?Question?Answer) TO
?PeerAssistant

ELSE Action SEND noAvailableArtifact TO
?PeerAssistant

Table 5.2: Textual description of the rule R1 of the AM

216 The KARe System

Providing Proactive Recommendations

The Providing Proactive Recommendations Plan can actually be refined

into three sub-plans, each covering one of the proactive knowledge delivery

functionalities described in section 5.1.3, i.e. a) periodic search; b) solving

pending requests; and c) suggesting interaction with similar users. In this

section, we present one AOR Activity Diagram for each of these functional-

ities. This type of diagram combines the AOR IPD and the UML activity

diagram, and was first introduced in (Taveter and Wagner, 2005).

The internal behavior of the PA when handling a periodic search is de-

picted in Figure 5.19.

Peer

Assistant

PeriodicSearch()

searchNewArtifacts

:Peer

Assistant

vocTax, threshold, date

provideNewArtifacts

lstArtifacts

ProactPerExpired

SelectTaxonomy()

R1

FindSimilarTax

(tax: Taxonomy)

R2

WaitForResponse()

R3

<<belief>>

Taxonomy

RankTrustRolePref

(lstArtifacts: list of Artifacts)

R4

<<belief>>

Peer
{threshold,date}

{lstArtifacts}

Figure 5.19: The PA periodically asks other PAs for new artifacts of interests
for its peer

The PA’s action is triggered by an environmental event, i.e. the period

Detailed Design 217

for proactive recommendations set by the user (refer to the diagram of Fig.

5.12) has expired. The task of the PA then consists in finding new artifacts

of interest for its associated peer. As mentioned in section 5.1.1, the user’s

interest is perceived by the taxonomies he/she maintains. Hence, for each

of the user’s taxonomies, the PA broadcasts to the other PAs a request for

the artifacts recently created or updated, classified under similar taxonomies

maintained by the remaining peers in the network (see the searchNewArti-

facts message). The taxonomy is represented by a general set of keywords

referred to as vocabulary (see the vocTax in the searchNewArtifacts message).

The similarity between two taxonomies can be then calculated by comparing

their vocabularies. The keywords composing a taxonomy’s vocabulary are

chosen with basis on the concepts of the taxonomy and on the artifacts (doc-

uments and messages) classified under them. Both the vocabulary creation

and the similarity measure become more clear in chapter 6, where KARe’s

recommendation mechanism is fully described.

For controlling a satisfactory level of similarity between the taxonomies,

the PA uses a percentage threshold previously configured by the peer (refer to

the diagram of Fig. 5.12). This means that only taxonomies whose similarity

measure is equal or superior to the selected threshold should be considered.

Besides this, the PAs receiving the request only return artifacts that have

been created and updated after a specified date. This date is maintained

by the PA, indicating when was the last time it has conducted a periodic

search. As indicated in the diagram, both date and threshold are stored in

the user model (represented by the Peer belief).

After receiving the list of artifacts, the PA ranks this list according to

the trust of its associated peer in other users, similar roles and preferences

regarding specific artifact type or format. In other words, items coming from

trusted users, users with the same role of the peer, and complying with the

peer’s presentation preferences score higher and are thus placed on the top

of the list. The list is delivered to the peer (although not represented here

for simplicity) and is available for him/her until the next periodic search.

Figure 5.20 depicts the PA internal behavior when solving a pending re-

quest on behalf of the peer it represents.

218 The KARe System

Peer

Assistant

FindAnswerPendingQuestion()

searchAnswer

:Peer

Assistant

KeyQuestion,VectConc

provideDocument

Doc

ProactPer

Expired

SelectPendQuestions()

R1

FindAnswer

(q: Message)

R2

WaitForResponse()

R3

Question, Doc

pendQuestionResponse

<<belief>>

Pending

Question

<<belief>>

Document

Peer

Figure 5.20: The PA looks for the answer for a pending question on behalf
of its peer

Again, the PA’s initiates his action after perceiving that the proactive rec-

ommendation period has expired. First, the PA looks for pending questions

in the Message repository. For each pending message, the PA broadcasts a

message to other PAs, searching for an appropriate answer. When receiving

the message, the other PAs look for answers among the artifacts of their peers

(following the logics of the diagram of Fig. 5.18), and submit the answers

they find to the requesting PA. When the PA receives the incoming docu-

ments, it checks if they have already been delivered to the peer. Verifying

that this is not the case (note the crossed arrow coming from the Document

belief object), the PA delivers the received knowledge artifact to the Peer.

Here, we just treat the case where the PA receives documents as answers,

but this is a simplification, as pairs of questions/answers could also be sent.

When receiving questions and answers as responses, the PA’s treatment of

these artifacts is analogous to the documents’ treatment. Thus, we decided

to supress this possibility for clarity purposes.

For suggesting similar peers to interact with its associated peer, the PA

Detailed Design 219

relies on the Broker. In this case, it is more interesting to design the internal

behavior of the latter than the former, as shown in Figure 5.21.

Broker

FindSimilarPeers()

searchSimilarPeers

Peer

Assistant

vocTax, threshold,

prefRespond

provideLstSimPeers

lstSimPeers

SelectSimilarTaxonomy()

R1

RankPrefResponder

(lstPeers: list of Peers)

R2

<<belief>>

Peer

ProactPerExpired

{vocTax’}

Figure 5.21: The PA searches for similar users on behalf of its associated
peer

The expiration of the proactive recommendation period (ProactPerExpired

event) once more triggers the PA to seek for proactive assistance on behalf

of its associated peer. Then, the PA submits to the Broker a request for a

recommendation regarding similar peers (see searchSimilarPeers message). As

in the periodic search case, the PA does this for each taxonomy maintained by

the peer. In other words, peers similarity is mainly given by the comparison

of their taxonomies (representing both their interest and expertise). Later,

the other user model factors are used for ranking purposes.

When receiving the PA’s request, the Broker first compares the incoming

taxonomy vocabulary (refer to vocTax parameter of the searchSimilarPeers

message) with the vocabulary of other peers’ taxonomies, whose information

the Broker has been collecting in the system’s idle periods (note vocTax’

coming from the Peer belief, which represents the user model maintained by

220 The KARe System

the Broker). Again, the threshold earlier set by the peer is taken into account

to guarantee that an adequate level of similarity is achieved. After building

a list of similar peers, the Broker ranks this list according to the cognitive

and social aspects present in the user model, i.e. expertise (still given by

the similarity of the taxonomies), reliability, trust, role and collaborative

level. The ranking is done according to the order of preferences previously

established by the peer (refer to the diagram of Fig. 5.12). This is the same

order used by the Broker to select responders to specific knowledge requests,

exemplified in the diagram of Fig. 5.14. The ranked list of peers is finally

sent to the PA, which presents it to its associated peer. Furthermore, the

list is kept for user’s consultation until the next search for similar peers.

5.4 Integration with Other Systems

An initiative has been launched to integrate KARe to other complementary

tools, as part of the SCALE (Supporting Community Awareness, Learning,

and Evolvement) research project. The main aim of SCALE is to promote

the learning, development, and growth of communities of practice across

small and medium enterprises through the development and integration of

intelligent adaptive technology. In particular, SCALE proposes to develop a

toolbox of solutions, integrating an existing system (KEEx) and two other

tools under development: IVisTo and KARe. This toolbox enables media-

tion of knowledge exchange between organizational members by a) helping

users become aware of each other and their communities, b) promoting in-

teraction, knowledge sharing, and organizational learning, and c) facilitating

the evolution of community practices.

KEEx (Bonifacio et al., 2004) allows users to share knowledge in a peer-to-

peer fashion. Similarly to KARe, the users of KEEx contextualize their doc-

uments using taxonomies called contexts. Then, they are allowed to search

for other documents by keyword or by context similarity. While profiting

from this already available functionalities, KARe can complement KEEx by

granting users with the possibility of asking and answering questions, imi-

Integration with Other Systems 221

tating the natural processes community members use to share knowledge.

Moreover, KARe adds proactivity to the system, by suggesting knowledge

items to users, besides identifying similar peers with whom the user may be

interested in interacting with (refer to sections 5.1.2 and 5.1.3 for a detailed

description of these functionalities).

IVisTo comes to enhance the visualization methods provided both by

KEEx and KARe. Both in KEEx and in KARe, the result set is presented

as an ordered set of knowledge artifacts, ranked by similarity concerning

the user query. IVisTo provides more a sophisticated way of visualizing this

result, by raising users’ awareness of the types of knowledge communities

that exist in the distributed network. More specifically, this tool allows

the visualization of KARe’s user model features (see section 5.1.1), such as

trustability, organizational role, reliability, collaborative level and availabil-

ity are visualized in dynamic social networks. The user is able to manipulate

such networks, choosing how to view and access knowledge artifacts. Figure

5.22 illustrates how KARe, KEEx and IVisTo may be integrated, showing a

snapshot of the recommendation screen.

Figure 5.22: SCALE toolbox

The left side of Figure 5.22 shows a prototype of the IVisTo tool. The

tool takes into consideration both the social community-oriented informa-

222 The KARe System

tion, and the more traditional and accessible lexical and semantic similarity

information provided by KEEx. IVisTo displays a weighted combination of

social networks, where each social network addresses a different user model

variable, and the weights are given by the user’s preferences. The bottom

half of IVisTo window contains a set of slider bars representing the social

variables in KARe’s user model and the lexical and semantic attributes given

by the lexical and context matching algorithms of the KEEx knowledge man-

agement platform. Using these slider bars, the user can indicate the impor-

tance, or weight, of each variable. Behind the scenes, the system generates a

social network for each of the user model variables, and then computes one

single network by calculating a weighted sum of the individual networks.

For example, Sally’s visualizations show her in the center of the screen, and

the peers that returned knowledge artifacts as the result of a query in the

periphery. Finally, the length of the links between her and her peers suggest

the degree of similarity between her and her peers according to each user

model variable. In the case of “Role”, the length of the links suggests the

degree to which Sally holds a similar role as each of her peers. In this way,

IVisTo can provide each user access to a personalized view of the knowl-

edge society, weighted according to his knowledge and interests. A KARe

window is shown on the right side of Fig. 5.22, illustrating how KARe may

proactively recommend a user to contact another peer with which to share

knowledge.

Figure 5.23 presents the SCALE integration model, which defines the in-

teractions between the SCALE Visualization Tool, the KARe multi-agent

component and the KEEx knowledge management environment. A new

component named the User Model Engine is added to facilitate this in-

tegration. This design decision is based on the fact that all three tools

may work separately, although benefits are achieved by using them as one

integrated system.

Although KEEx has its own interface, the SCALE system provides a new

and intelligent interface, given by IVisTo. Fig. 5.23 shows that the recom-

mendations provided by KARe are also available through this interface (User

Recommendation arrow). KEEx output (lexical and semantic information)

Related Work 223

IVisTo

KAReParser
UM

Storage

User State

User Values

Recommendations

User UpdateUser Update

User Values

UM

Engine

UM

Update

KEEx

XML

SCALE Integration Model

User Input

Figure 5.23: SCALE integration model

are presented in the form of an XML file, which is parsed to the User Model

Engine (XML and UM update arrows). The UM Engine plays a central role

in the integration model. It is responsible for guaranteeing the consistency

of the user model information both to VisTo and to KARe, which updates

the user model based on the ongoing interactions among the other peers.

5.5 Related Work

In order to analyze the work related to KARe, we elaborated a model that

summarizes the main elements of KM systems. A KM system must provide

knowledge to the right person at the right time. Although each system

presents different architecture and functionalities, an abstract structure can

be created to enable the analysis of their common elements. In general,

KM systems integrate knowledge artifacts, disseminating them through the

knowledge community. In order to accomplish that, they must: a) have

access to the semantic of the content of the available knowledge artifacts;

and b) identify the user’s needs and preferences. The four layers illustrated

in Figure 5.24 provide an abstraction for reasoning about these two general

requirements.

224 The KARe System

Semantic Model

Adaptation Model

Presentation Model

Personalization

Conc. GeneralizationRep. Formalization

Knowledge AssetsLayer 1

Layer 2

Layer 3

Layer 4

Figure 5.24: A layered view of KARe

The layers in Fig. 5.24 should be understood as different set of services

that need to be provided by a KM system. These services are disposed in

layers to indicate that the superior layers rely on functionalities provided

by the inferior ones. Layer 1 represents the knowledge assets exchanged by

the knowledge community. As earlier described in section 4.10, knowledge

artifacts may be classified into documents and messages. The difference

between documents and messages is important because they have different

purposes within the community. While a document is used by the commu-

nity members to learn about a particular procedure or topic, messages are

typically used for communication purposes (for instance, to inform some-

thing, to clarify doubts and to debate particular issues). Messages can be

regarded as important resources for the disambiguation of tacit knowledge.

As already pointed out, much of one’s knowledge is not registered in any

kind of physical artifact, but rather confined in one’s mind. Nevertheless,

Nonaka and Takeuchi (1995) have informed us that intuitions, feelings and

tacit ideas can be socialized between community members, through direct

communication (refer to chapter 2 for a discussion on socialization).

The Semantic Model of layer 2 is responsible for the reasoning of the sys-

tem about the content of knowledge artifacts, addressing the problem early

mentioned in a). Thus, the Semantic Model is responsible for the two tasks

described by Fischer and Ostwald (2001) as related to knowledge integration

in KMSs: representational formalization, i.e. putting information in an ap-

propriate computational syntax so that the system can access and interpret

Related Work 225

it; and conceptual generalization, i.e. providing domain specific semantics to

each knowledge artifact.

The problem early presented in b) is addressed by Layers 3 and 4: the

Adaptation Model and the Presentation Model, respectively. The Adapta-

tion Model is specifically concerned with ‘what’ is going to be presented to

the users, while the Presentation Model determines ‘how’ such knowledge

will be presented. Both layers deal with Personalization, i.e. consider user’s

needs and preferences, through their user models to support knowledge de-

livery.

5.5.1 Materializing the Semantic Model

Representation Formalization can be generally achieved by providing some

metadata about the stored knowledge artifacts. Metadata (such as title,

owner, author, date, etc.) enable a systematic organization of knowledge

artifacts in a way that important information about them may be easily

captured by the system. Important here is how to decide which metadata

should be considered. There are several ongoing initiatives related to the

definition of metadata specific for certain knowledge fields. One of these

initiatives is the EDUTELLA project Nejdl et al. (2002), which aims at

providing a peer-to-peer networking infrastructure to support the exchange

of educational material. In order to accomplish this, peers can make their

documents available in the network, specifying metadata information as a

set of RDF statements.

Several researches adopt the Dublin Core Initiative 6 as the initial or

complete set of metadata. However, as mentioned in (Davies et al., 2003a),

some metadata might be specific for a given community. This way, it is ad-

visable to keep this option customizable, allowing the community members

to negotiate and create new relevant metadata for their particular purposes.

A common way to organize this information is the use of a database to

centralize and efficiently recover metadata about knowledge artifacts. Al-

ternatively, metadata languages may be applied, such as XML or RDF, the

6http://dublincore.org/

226 The KARe System

latter presenting more reasoning power the the former (Davies et al., 2003b).

In order to accomplish concept generalization, artifacts may be classified

according to a domain conceptualization. Although taxonomies and ontolo-

gies have been used in the past, the Semantic Web has recently increased

the interest on using such conceptual models to explicitate the semantics re-

garding knowledge artifacts (Davies et al., 2003b). A taxonomy is somewhat

more restrict than an ontology as it mainly focuses on hierarchical relations

between concepts, usually depicted in a tree structure. Figure 5.25 illustrates

the difference between ontologies and taxonomies. Regarding concepts these

two methods of conceptualization are equivalent. However, as shown in the

figure, ontologies admit more complex types of relations than taxonomies.

Several applications in the Semantic Web rely on ontologies to support

KM. Reimer et al. (2003) for example, builds an ontology of skills to support

the development of a catalog of workers. This catalog can support users on

finding experts on specific subjects, tasks and skills. Another system is On-

toShare (Davies et al., 2003a), which creates a content management system

used by organization’s members to classify and share knowledge artifacts

based on a shared ontology. OntoShare users annotate documents using

RDF and classify them according to an ontology. Besides delivering knowl-

edge reactively, by matching the incoming documents with the user model,

the system is able to proactively retrieve knowledge to the user. Differently

than KARe, however, this system adopts a client-server approach, and pre-

supposes the existence of a shared conceptualization (ontology) among the

members of the community.

KEEx (Bonifacio et al., 2004), on the other hand, apply taxonomies (re-

ferred to as contexts) as conceptual frameworks to mediate the exchange

of knowledge between peers. Another adept of taxonomies is Hyperwave7,

which classifies the resources according to taxonomies that can be then con-

sulted by the system users. KARe shares similar vision with KEEx, since it

is also based on the Distributed Knowledge Management approach (DKM)

(Bonifacio and Bouquet, 2002). KEEx allows each individual or community

7Knowledge Management with the Hyperwave eKnowledge Infrastructure, whitepaper
available at http://www.hyperwave.com/

Related Work 227

Real Estate

Estate-to-live-in Business Estate

HouseApartment Office Building Hotel

Real Estate

Estate-to-live-in Business Estate

HouseApartment Office Hotel

Floor

Room

is-a Is-a

part-ofpart-of

part-of

Address
located-in

Person

owned-by

is-ais-a is-a is-a

A) Taxonomy

B) Ontology

Figure 5.25: Exerpts of a real estate A) taxonomy and B) ontology

228 The KARe System

of users to build their own knowledge space within a network of autonomous

peers. Each peer can make documents locally available, along with their

context. When searching documents from other peers, a set of protocols

of meaning negotiation (Bouquet et al., 2003) are used to achieve semantic

coordination between the different representations (contexts) of each peer.

KEEx is specifically concerned with the exchange of documents and does not

address peer collaboration through the exchange of messages, which is one of

the targets of KARe. In this sense, as described in section 5.4, KARe adds

functionality over KEEx, supporting the natural social processes of asking

and answering questions. As a result, KARe adjusts better into current orga-

nizational practices, providing the opportunity for organizational members

to solve problems and doubts in collaboration with their workmates.

The choice of using taxonomies instead of ontologies is motivated by the

DKM philosophy, which defends that rather than sharing an unique concep-

tualization, each organizational member has his own view of his/her work

domain. Thus, both in KEEx and in KARe, each user builds his own con-

ceptual model. As ontologies are generally considered too complex and time

consuming to be built, we consider taxonomies as a more realistic model

for the common user to create. In a sense, many workers already create

directory classifications of this kind, both for physical or digital file systems.

SWAP (Fensel et al., 2003) also adopts the DKM strategy, relying in what

they term “lightweight” ontologies. The authors have not so far clarified,

however, the nature of these lightweight ontologies, and how they relate both

to the more general concept of ontology and to taxonomies.

We do acknowledge that several organizations are today investing on the

construction of ontologies to describe their activities and domains of exper-

tise (Reimer et al., 2003) (Gangemi et al., 2003) (Gruninger et al., 2000).

Seeking to profit from these efforts, an organization ontology can be used as

an initial conceptual model for KARe’s users. The users may them choose

parts of this bigger conceptualization to classify their artifacts, based on

their own interests and targeted areas.

Related Work 229

5.5.2 Supporting the Adaptation and Presentation

Layers

The Adaptation and Presentation Models are responsible for providing the

system with the means to retrieve knowledge according to the user’s par-

ticular needs, interests and preferences. In order to accomplish that, these

layers are commonly built around a user model, as the one described in sec-

tion 5.1.1. In this section, we describe how other systems model their users

in comparison with KARe8.

The Adaptation Model is concerned with ‘what’ piece of knowledge is

needed in particular situations. Different characteristics may be explored

to combine knowledge artifact’s content and user’s need. For example, two

of the most common features used to classify different users is interest and

expertise. Interest is commonly used as a basis for the system to provide

new knowledge artifacts to the user, while expertise is the main source for

referrals to specific users as knowledge providers. Similarly to KARe, IVisTo

(Soller et al., 2004) and Ontoshare (Davies et al., 2003a) classify the user’s

interest and expertise based on the concepts they choose to classify their

belonging artifacts. In MARS (Yu and Singh, 2002), such information comes

as a vector of keywords, created and updated with basis on questions and

answers exchanged by the users.

I-Help (Bull et al., 2001) gathers information of interest and expertise

from topics provided by the users, but also using data mining in records

gathered throughout user’s interaction with system tools. I-Help has recently

evolved towards the peer-to-peer model (Vassileva, 2002).A student needing

help can request it through his/her agent, which finds other students who

are currently online and have expertise in the area related to the question.

As in KARe, there is a centralized matchmaker service, which maintains

models of the users competences and matches them to the help-requests.

On the other hand, this system does not support management and sharing

8besides systems specifically tailored for KM, we also considered three e-learning sys-
tems (AdELE, Elena, and I-Help) in our classification. This is justified by the fact that
they are representative of systems aimed at flexibly delivering knowledge to the users
(learners, in these cases), possessing elements of all the layers of our model

230 The KARe System

of documents, restricting itself to messages exchange.

Regarding reliability, i.e. the level of expertise of a provider regarding a

particular topic, MARS adopts a similar approach in comparison to KARe.

This system also locally updates the reliability of the providers (i.e. on the

seeker’s user model), based on the seeker’s feedback regarding the incoming

response to a particular query.

Concerning trust, three other tools support an approach similar to the

one adopted in KARe, i.e. through a “list of friends”: IVisTo and I-Help.

Besides positive trust indication, I-Help provides the additional possibility

of indication of a non-trust list.

Once more, IVisTo shares with KARe the collaborative level approach,

calculating it based on direct feedback given by a knowledge provider to a

knowledge seeker. In MARS, this feature, referred to as sociability, is calcu-

lated by the ability of an agent to refer to others with valuable information.

MARS calculates and updates this value based on user feedback.

FRODO (van Elst et al., 2001) and IVisTo (Soller et al., 2004) also con-

sider roles as one of the main determinants of a specific knowledge need. As

in KARe, in these two other systems, the user’s roles are indicated by the

users themselves.

The physical context of the user may also be an important subsidy for

the Adaptation Model. For example, specific knowledge artifacts may be of

help when users are executing a given task. Both KnowMore (Abecker et al.,

2000) and FRODO (van Elst et al., 2001) monitor the user’s current task, by

integrating an workflow management system as part of their KM solution.

FRODO provides an interesting approach of classifying tasks according to a

task ontology, and then indicating the information needs required by specific

tasks. In this way, the system is able to retrieve supporting knowledge

artifacts from the available ones in the organizational memory. AdELE

(Garcia-Barrios et al., 2004) monitors the user’s reading task, tracking his or

her eye-movement to produce fine-grained data about user reading behavior.

The collected information is used to adjust the user model regarding interest

and expertise of the user on particular topics, thus supporting the system

Related Work 231

on suggesting new content.

Besides the Adaptation Model, the Presentation Model is also sup-

ported by the user model. Rather than focusing on ‘what’ knowledge to

present, this model is concerned with the way knowledge should be pre-

sented. Hence, the Presentation Model is focused on format rather than

on content. As described in section 5.1.1, KARe provides knowledge to the

users, based on their presentation preferences and on their physical context

(time and location). Similarly, AdELE (Garcia-Barrios et al., 2004) also

bases its choice on presentation format using contextual information gath-

ered with eye tracking technology (e.g. delivering more images/tables for a

user that has problems with large and complicated texts).

5.5.3 Using the Layered Model to Classify KM Sys-

tems

The discussion regarding KARe’s related work is summarized in Table 5.3.

This table illustrates how to use the provided layered model to classify dif-

ferent KM systems. This allows us to discuss their different functionalities

and solutions in light of the semantic, adaptation and presentation models

described before. We can note from the comparison presented in the table,

which systems provide more or less support for each layer of the model.

For instance, Hyperwave, KRAFT and Ontoshare provide no support to

the adaptation and presentation layers, concentrating only on the semantic

model. MARS, on the other hand, places greater strength on the adapta-

tion model, presenting limited support to the semantic layer, and no support

to the presentation layer. Understanding these differentiations may assist

the determination of which supporting system to use in a particular case.

The table shows that KARe covers well all three models, thus providing a

comprehensive range of functionality for its users.

232 The KARe System

5.6 Conclusions

This chapter has proposed and designed the KARe system. KARe aims

at supporting Constructivist KM, by flexibly imitating the social processes

that lead to knowledge sharing through question and answering. The sys-

tem fulfills the requirements elicited in chapter 4, providing an appropriate

means for newcomers and old-timers of Communities of Practice to share

knowledge. For that, KARe adopts a peer-to-peer infrastructure, granting

users with more control over their knowledge items, providing information

about experts in specific topics, and creating a dynamic environment for col-

laboration and knowledge exchange. In addition to that, the system reflects

a layered model, which considers both the need for the syntactic and seman-

tic representation of knowledge artifacts, and the benefits of adapting these

artifacts to user’s personal and cognitive characteristic, and presentation

preferences.

For the design of KARe, we applied ARKnowD, successfully verifying the

usefulness of our methodology to support this development activity. AR-

KnowD supports the analyst and designer to go all the way from domain

analysis to system architectural and detailed design. The designer starts

with a Tropos model of the system’s architecture and slowly moves towards

the detailed design, where AORML has been applied. The transformation

method previously defined in section 3.7.3 was applied in this chapter, con-

verting from Tropos to AORML notation. This transformation facilitates

the understanding of the system model, and help the designer to trace back

the system’s functionalities to the requirements elicited during the previ-

ous analysis activity. For instance, the AM’s organizing knowledge artifacts

and maintaining taxonomies plans, respectively modeled by the AOR ISDs of

Figs. 5.11 and 5.10 accomplish the AM’s providing p2p knowledge repository

goal. This goal has been generated by the allowing peers to keep control of

their assets, delegated by KARe to the AM. And finally, tracing it back to

the domain analysis presented in chapter 4, this goal has been previously

delegated by the CoP to the KARe system (refer to the diagram on Fig.

4.7).

C
o
n
clu

sio
n
s

233

Systems Layer 1: KA Layer 2: SM Layer 3: AM Layer 4: PM

Doc Msg Metadt Ont/Tax Inter. Expert. Reliab. Trust Role Col.Lev. Context Pref Context

AdELE x x x x x x x

Elena x x x x x x

FRODO x x x x x x x x

Hyperwave x x x x

I-Help x x x x x x x x x

IVisTo x x x x x x x

KARe x x x x x x x x x x x x x

KEEx x x x

KnowMore x x x x
KRAFT x x x

MARS x x x x x

OntoShare x x x

Table 5.3: Classifying KM systems classified according to the layered model

234 The KARe System

Throughout KARe’s design, we exemplified all major constructs and mod-

eling techniques of the AOR external model (Wagner, 2003). From Figs. 5.7

to 5.9 exemplify AOR’s information modeling diagram, namely the Agent

Diagram (AD). These figures show all AD’s constructs, such as the different

types of AOR agents (human, institutional and artificial), and several types

of relations (e.g. specialization, composition, association, ternary relation

and communication), most of them borrowed from UML. These diagrams

have shown different views from the system: while Fig. 5.8 focus on a con-

ceptual view of the system, Fig. 5.9 presents a design view, depicting only

the elements of the actual system and abstracting away from entities of the

domain. AOR interaction modeling diagrams are illustrated from Fig. 5.10

to Fig. 5.20. All diagrams present message passing between agents, and

some (as for example, Fig. 5.10 and Fig. 5.13) also illustrate agent’s non-

communicative actions. The use of commitment (and claim) is exemplified

in Figs. 5.14 and 5.15, showing the strength of this construct to enable ex-

ception handling, and especially the control of asynchronous communication

between agents when humans are involved (5.15). Finally, Figs. 5.18 to 5.21

show how AORML deals with behavior modeling, with the use of reaction

rules.

The design of KARe at this point is still platform-independent, thus con-

sisting in the MDA PIM described in section 3.7.1. The next chapter adjusts

this PIM for a specific platform, namely the Java Agent Development Frame-

work (JADE). Other platforms could be chosen, for example the system

could have been implemented in pure Java, or using the Jxta framework9,

specifically targeting the development of peer-to-peer systems. In this thesis,

however, we opted for keeping the agent-oriented nature of the system from

analysis to implementation. For implementation of agent-oriented systems,

JADE offers a good solution, in which agents adopt particular behaviors,

communicate through message exchange, and are supported by a common

communication ontology.

9http://www.jxta.org/

Chapter 6

Recommendation Algorithm

and Implementations

“Nothing becomes real until

it is experienced.”

John Keats

In this chapter, we present the core algorithm underlying KARe, i.e. the

algorithm that handles the questioning-answering process. Such algorithm is

based on an Information Retrieval technique that models knowledge artifacts

using their most important keywords. Besides, such algorithm considers

information from the taxonomic structures used to classify these artifacts

to find a suitable answer to an incoming knowledge request. Section 6.2

presents an introductory overview on Information Retrieval research, de-

scribing some techniques that are useful for contextualizing our work. Fol-

lowing, section 6.3 describes KARe’s recommendation algorithm in detail,

including its evaluation.

A second objective of this chapter is to present the remaining of the de-

tailed design of KARe, enabling its implementation with the JADE frame-

work. By doing this, we hope to demonstrate that the ARKnowD method-

ology enables the analyst and designer to consistently go from the domain

analysis (described in chapter 4) to system design, initiated in chapter 5 and

completed here. This final design stage (presented in section 6.4) leads us

235

236 Recommendation Algorithm and Implementations

through KARe’s implementation using the JADE framework.

Further in this chapter, section 6.5 describes the developed KARe pro-

totypes, providing their general idea and implementation details. Finally,

related work can be found in section 6.6, and section 6.7 concludes this

chapter.

6.1 Introduction

The principle underlying KARe is to support KM by imitating the natural

processes of social interaction, allowing organizational members to ask and

answer questions. As a consequence of this conceptual choice, the core of the

system consists in mediating the question and answering process. An impor-

tant part of handling this process comprises the automatic recommendation

of existing answers to users’ questions. This answer may be present in the

form of documents or responses to previously similar questions, both clas-

sified under the taxonomies maintained by each system peer. This chapter

describes an algorithm developed to support KARe’s recommendations.

The presently described algorithm is based on Information Retrieval (IR)

techniques. Information Retrieval is an established but constantly evolving

area of research that deals with all processes related to accessing relevant in-

formation in large collections of documents (Baeza-Yates and Ribeiro-Neto,

1999) (Salton and McGill, 1983). Thus, research in this field targets some of

the most pressing challenges of the information society, aiding people to ef-

fectively handle information overload. The relevance of information retrieval

for KM support becomes obvious, since KM systems are highly based on the

storage of explicit knowledge to be later retrieved according to the situation

at hand.

According to Baeza-Yates and Ribeiro-Neto (1999, pg. 3), “the effective

retrieval of relevant information is directly affected both by the user task and

by the logical view of the documents adopted by the retrieval system”. Logical

view of the documents refers to how information items are represented by the

system. A popular technique is representing documents as a set of keywords

Introduction 237

automatically extracted from it, or assigned to it by a specialist. KARe’s

peer-to-peer nature conditions the retrieval algorithm both regarding the

user task and the information item’s logical view. The knowledge items

stored by a peer are not viewed as a flat collection of documents. Instead,

the set of documents are structured by a taxonomy which classifies each of

these items under a concept of the tree.

As described in chapter 5, KARe users’ begin by classifying knowledge

artifacts (such as work documents and the like) using their own taxonomies,

much in line with the use of a structured file system. In other words, each

artifact is classified in a node of the taxonomy, analogous to storing files in

folders of structured file system. The choice of using taxonomies to classify

knowledge artifacts provide the system peers with a contextualized view of

knowledge artifacts, as already described in section 5.1.2. However, this is

just part of the reason why this choice has been made. Another strong claim

we make is that such information may be helpful in aiding our recommender

agent to automatically find knowledge on behalf of the system users.

In a traditional IR system, items are equally distributed in the document

collection, which should be completely searched when a retrieval request

is issued by the user. In KARe, however, taxonomies are used to classify

documents. Consequently, the system is able to search for the answer only

considering particular nodes of the taxonomy where the answer is probably

located. Besides diminishing computational complexity, this approach allows

the system to profit from user knowledge, previously encoded in personal

taxonomies, to retrieve knowledge more precisely.

The search process is triggered when a user asks a question, which he/she

first assigns to a concept (node) in his/her taxonomy. Hence, a question

(or knowledge request) is logically represented not only by the keywords

it contains but also by the keywords representing the concept which clas-

sifies it. For finding an appropriate answer, KARe must first match two

distinguishing taxonomies, analogously to (Avesani et al., 2005) and (Bou-

quet et al., 2003). More precisely, when receiving a knowledge request from

the questioner, the system must find in the responders’ taxonomies which

concepts are more likely to contain artifacts that satisfy this request, subse-

238 Recommendation Algorithm and Implementations

quently retrieving it. The concept representation is obtained by considering

its position in the taxonomy, and by the documents classified under it.

Although our assumption about the gains of applying taxonomies seems

reasonable, it can only be proved by testing our algorithm using real datasets.

Thus, besides describing the applied techniques, this chapter also presents

empirical data to validate them.

6.2 Information Retrieval

Information Retrieval relates to the representation, storage, organization

and access to information items (Salton and McGill, 1983). Research in

this area has initially been motivated by the growth of traditional libraries.

However, the use of information technology in such libraries, along with the

emergence of digital libraries have given new strength to this research field.

Information is usually embedded in a document, which is defined as: “a

single unit of information, typically text in digital form, but it can also in-

clude other media. It can be a complete logical unit, like a research article, a

book or a manual. It can also be part of a larger text, such as a paragraph or

a sequence of paragraphs. A document can be any physical unit, for example

a file, an email, or a web page.” (Baeza-Yates and Ribeiro-Neto, 1999, pg.

142). In this sense, document as defined here comprehends both the concept

of document and message previously defined in section 4.10. From now

on, we use the term ‘document’ having this more general meaning.

In traditional IR systems, we can distinguish three phases that compose

the information retrieval process:

• Analysis and Indexing : each new document is analyzed and appropri-

ately described by a set of index terms. After being suitably classified,

the document is incorporated in the existing information collection.

• Querying : a request is formulated according to established proceed-

ings, aiming at satisfying the user’s information needs.

Information Retrieval 239

• Retrieving and Presentation: a retrieval mechanism is used to find and

present the available documents that may be of interest to the user.

Besides these three main phases, some pre-processing operations are often

executed to prepare the document to be indexed and searched. Thus, IR

systems (IRSs) usually follow a general structure, illustrated in figure 6.1.

The main components of an IRS are: 1) the user interface, where the user

is allowed to enter his query ; 2) the text pre-processor and 3) the indexer,

which together accomplishes the analysis and indexing phase; and finally, 4)

the searching mechanism, responsible for handling the query and performing

the last stage of retrieving and orderly presenting items. The following

sub-sections discuss three of the main components of an IRS: the text pre-

processor (section 6.2.1), the indexer (section 6.2.2) and the searcher (section

6.2.3). Further, we summarize the classic IR modeling approaches (section

6.2.4) and the main evaluation mechanisms for IRSs (section 6.2.5).

INDEXINGSEARCHING

Text Database

User

Interface

Text

Pre-Processor

Query

Operations
Indexer

Database

Manager

Searcher Index

Ranking

Ranked

Documents

Retrieved

Documents

Query

User

Feedback

Logical

View

User

Need

Logical

View

Text

Text

Indexed

File

Figure 6.1: Our view on the information retrieval systems’ general architec-
ture

240 Recommendation Algorithm and Implementations

6.2.1 Text Pre-processing

In order to create the vocabulary of a collection (i.e. the most representative

terms of the collection), we must select all the index-terms that are relevant

to represent our collection and include them in the vocabulary index. This

implies some text operations to select the index terms. Mostly noun terms

are selected because these usually carry the semantics in a sentence. Text

pre-processing is thus a necessary step to improve the performance of any

IRS. The most common operations performed over text are the lexical anal-

ysis, elimination of stopwords and stemming.

Lexical Analysis

The objective of the lexical analysis is to treat digits, hyphens, punctuation

marks and the case of letters. This leads to the identification of individual

words in the text, so that with the words in hands, one can disregard the

ones that are not good index terms for searching (such as numbers). This

procedure often includes the removal of punctuation and hyphenation, and

sometimes even the case of the letters.

Elimination of Stopwords

Stopwords are terms such as articles, conjunctions, adverbs and prepositions,

which are generally too common in all documents. They are usually filtered

out because they are useless for information retrieval purposes, since they do

not differentiate documents. In other words, these terms frequently appear

in all documents, independently of the document’s content. Thus, they

are not considered good index terms. An advantage of the elimination of

stopwords is that it reduces the size of the index, so the system can be faster

when performing the search.

Stemming

Stemming is the process of reducing a word to a common root, i.e. it reduces

word variants to a common concept. This could be achieved by removing

Information Retrieval 241

prefixes and suffixes to a “stem”. So, if we have only stems instead of words

(and their variants) in our index, the search can be more precise and faster.

For example, the words ’swimming’, ’swimmer’ and ’swim’ should all be

represented by the same stem ’swim’. There are several types of stemming

such as table lookup, successor variety, and affix removals.

6.2.2 Indexing

The indexing activity consists in attributing a set of terms that identify the

content of a new document to be included in the collection. This activity

is considered by many researcher as the most difficult of all, due to the

complexity of finding the ideal set of terms to represent each document

(Salton and McGill, 1983).

Indexing is redundant if the collection is small, or if it allows search in

the entire text of each document each time a query is made. In practice, this

solution was very costly, however, today, this is a common approach used

by Web-based search engine. However, still in our days, instead of using a

full text search, many IRSs use data structures representing the collection

index. This is an appropriate choice when searching in static or semi-static

collections. Only if the IRS is used for a dynamic collection, one could think

of combining the two approaches, i.e. a small database for searching the

new documents (while they have not yet been indexed) and a large index

for searching the old ones.

Most IRSs use the inverted file index data structure. Figure 6.2 illustrates

this method. The index terms consist of a set of words selected during the

text pre-processing. Next to each index term, there is a list of tuples in

the format (Document;Occurrences), which respectively identify a document

where a given index term appears, and how many times it occurs in such

a document. In this way, for each word on the database, we can directly

retrieve the documents where it is located, knowing also how many times it

has appeared in each document.

To select which words should be part of the index (an operation commonly

known as feature selection), the most well-known approach is based on the

242 Recommendation Algorithm and Implementations

Documents/OccurrencesIndex Terms

Computer

Science

Abstract

System

Algorithm

Introduction

Doc1;30

Doc2;3

Doc3;23

Doc1;30

Doc3;8

Doc4;15

Doc2;3

Doc5;9

Doc4;15

Doc5;10

Doc4;9

Doc5;3

Doc4;15

Doc6;7

Doc6;10

Doc6;3

Doc5;15

Doc7;1

Figure 6.2: Illustrating the inverted documents index

frequency of the words in the text of each document. This technique is based

on the calculation of the frequency of all words in a document, organizing

them in descending order according to the frequency. Then, a superior and

an inferior threshold are determined, and the words of middle frequency are

chosen as the index terms. The most frequent words are eliminated because

they usually are stopwords, while the less frequent terms are left out for not

being representative of the content of that particular document.

6.2.3 Searching

As can be noted in Fig. 6.1, searching occurs in three steps: 1) querying; 2)

the search itself and 3) ranking of the results.

Querying refers to the stage when the user expresses his/her information

need, through a system request. The most common querying approaches

are the use of keywords, sometimes combined with boolean operators: AND,

OR, and NOT, which respectively indicate conjunction, disjunction and ex-

clusion of query terms (Baeza-Yates and Ribeiro-Neto, 1999). For providing

a more intuitive interface for the common user, some search engines substi-

tute AND and OR operators for statements such as “including all words” and

“including one or more words” respectively (see for instance, the advanced

search of Google 1 and Altavista 2)

1http://www.google.com/advaced search?hl=pt-BR
2http://www.altavista.com/web/adv

Information Retrieval 243

The searching and ranking mechanisms depend on the kind of informa-

tion retrieval model the system was built upon. For example, the algorithms

that apply boolean search do not use any ranking mechanism, since this type

of search may only indicate if the document satisfies or not a given query.

Besides the boolean model, another common IR model is the vector model.

In this model, both the indexing terms and the query terms receive weights.

These weights are then used to compute the similarity between the docu-

ments and the user query. In this way, the system also considers documents

that partially satisfy a query, providing them a lower grade than to those

that completely satisfy the query. Section 6.2.4 describes IR modeling in

detail.

It is important to note that the retrieval may result in an empty result

set. This is due to the difficulty in generating a perfect combination between

index and query terms, since the choice for both is uncertain. The indexers

usually apply a rule of specificity to choose index terms, while query users

tend to use more general terms. This is one of the biggest limitations of

IRSs, minimized by the adoption of one of proposed query refinement tech-

niques (Chen and Dhar, 1989). In general, these techniques strongly rely on

interaction with the user, who refines the query based on his experience and

on the ranking mechanism.

A way of reducing the effort of the user on manipulating the result set, also

helping him on formulating new queries, is to contextualize the documents

of the result set according to the user query. A popular technique is the use

of metadata beside the title of the retrieved documents (e.g. date, source,

file size and abstract), providing extra information for the user concerning

the retrieved documents. Other techniques include highlighting in the text

of the retrieved documents the query terms, or providing a KWIC (keyword-

in-context), which is a summary of the document, extracting from it a few

sentences in which the query terms occur.

244 Recommendation Algorithm and Implementations

6.2.4 Modeling

As mentioned in chapter 3, a model is an abstract representation of a portion

of the real world. With such representation one is able to simulate problems

and solve them by analysis. Thus, regarding IR Models, we understand that

on one hand, there is information representation and on the other hand,

there are the different retrieving mechanism.

More specifically, “information representation” refers to the logical view

of a collection of documents and the queries that form the input of a system.

The approach to retrieve the information would be a framework that models

the documents and queries into its logical forms, and a ranking function

that orders the document set according to queries. Thus, as Baeza-Yates

and Ribeiro-Neto (1999) mention, the IR models may be represented as a

quadruple D, Q, F, R(qi, dj) where:

• D is the document set. The documents are represented as the elements

of the set. D : d1, d2, . . . , dn;

• Q is the user query;

• F is the framework to model documents and queries into a logical form;

• R(qi, dj) is a function to rank documents according to a particular

query.

There are different ways to approach the modeling “framework” and the

“ranking function”. This results in different IR models, such as: the boolean

model, the probabilistic model and the vector model. In this work, we apply

the vector model, thus describing it in detail. The other two approaches are

only briefly described.

Boolean Model

The boolean model is the most intuitive one among the three. The queries

are represented by boolean expressions (composed of keywords that are com-

bined by the boolean operators: AND, OR, and NOT). Documents are then

Information Retrieval 245

classified as being relevant or not, based on this query. Thus, this approach

does not consider documents that only partially match a query, since boolean

expressions are not flexible. In systems that apply this kind of model, the

creation of queries is usually simple, but generally leads to large response

document sets with lots of irrelevant documents. In order to find more rel-

evant documents, the user must know more about the information to be

extracted. In this sense, the user first makes a broader query and then,

refines this query by examining the result set. This is usually an iterative

process and its success depends on the user’s experience on the topic.

Probabilistic Model

This model attempts to capture the IR problem within a probabilistic frame-

work. It assumes that an “ideal answer set” exists for a given query, contain-

ing exactly all relevant documents to answer this query. The problem then

consists in determining which properties (characterized by index terms) de-

scribe this ideal answer set. As these properties are initially unknown, the

functioning of this model directly depends on user interaction. A proba-

bilistic system first generates guesses on the probability of the documents’

relevance given a particular query. Then, the user is requested to evaluate

the retrieved document set, informing the system about his/her evaluation

regarding the relevance of each document. The system subsequently uses

this information to refine the query. By repeating this process several times,

it is expected that the initial description will evolve to a closer description

of the ideal answer set, thus providing better results.

Vector Model

In the IR vector model, documents and queries are treated as real algebraic

vectors where the dimension of the vectors is determined by the dimension

of the vocabulary (i.e. the vectors size is given by the size of the vocabulary

index) (Baeza-Yates and Ribeiro-Neto, 1999). Therefore, once the vocab-

ulary has been determined (i.e. the text is pre-processed, determining the

index-terms), all documents are represented by vectors. Each dimension of

246 Recommendation Algorithm and Implementations

the vectors is calculated based on the frequency of each index term in each

document itself. Having this vectorial representation, it is possible to cal-

culate the similarity between couples of documents or between a document

and a query.

In figure 6.3, the depicted vectors are the abstraction of a query (Q) and

any particular document (d from a set of documents D), and the angle θ indi-

cates how close these vectors are, thus indicating the similarity between the

document and the query. There are several measures for vectors similarity,

and one of the most well-known of them is the cosine of the angle θ formed

by the vectors. Due to the popularity of this approach, in this work, the

cosine measure is also applied. As a consequence of being a cosine, the result

of the similarity function varies from 0 to 1 in an ascending order of vectors

similarity. Equation 6.1 describes a cosine similarity between vectors.

dj

Q

Θ

Figure 6.3: The cosine function is used to compute the similarity between a
query Q and a document dj

similarity(
→

dj,
→

Q) =

∑t
i=1 wi,j · wi,Q

√

∑t
i=1 w2

i,j ·
√

∑t
i=1 w2

i,Q

(6.1)

Here, wi,j is the weight of the index terms of document
→

dj and wi,Q is the

weight of the index terms of the query
→

Q.

Each dimension value of the vectors is computed based on the frequency

of the index term in question on the document collection. There are several

ways to compute the dimension’s weight and this process is called index term

weighting. For this work, we chose the TF ∗ IDF method (see Equation

6.2). This method computes the weight in two steps. First, we calculate the

Information Retrieval 247

term frequency (TF, represented by fk) of a particular index term in each

document. Secondly, we calculate the amount of documents that contain the

term wk, i.e. inverse document frequency (IDF, represented by log N
nk

). In

this equation, N represents the total amount of documents in the collection,

while nk characterizes the number of documents containing index term wk.

The aim of using both TF and IDF in the weight calculation is on one hand,

to increase the weight if a term is very popular in a document and on the

other hand, to penalize the weight (i.e. to decrease its value) if the term is

present amongst many documents.

wk = fk ∗ log
N

nk

(6.2)

6.2.5 Evaluation

There is no absolute measure that evaluates how good an IR system or

algorithm is. Usually, algorithms are measured according to their precision

and recall and compared with each other. To find a unique number to be

compared, the F1 measure is often used. This measure is an average of the

precision and recall results. It is important to remember that to compare

two systems, one must use the same set of documents and queries.

Precision

Precision is the relevance measure to the searcher of the items that are

retrieved, i.e. if a search returns ten documents of which nine are very

relevant, that search has high precision. This measure is more important

when the users of the system prefer an approach that retrieves a specific

document very fast.

precision =
NumberRetrievedRelevantDocuments

NumberRetrievedDocuments
(6.3)

The precision, as can be noted by equation 6.3, measures the ability of

the system to refuse the non-relevant documents. In other words, it is a

measure of the correctness of the system’s retrieval approach.

248 Recommendation Algorithm and Implementations

Recall

Recall is the proportion of relevant information that is retrieved by the

search, i.e. if a search only retrieves one hundred relevant documents out of

three thousand that are available (and relevant), that search has low recall.

On the other hand, if it retrieves all the available documents on the topic

of the search, it has high recall. This measure is, thus, dependent on the

documents of the collection. This measure is more important when the

users of the system prefer an approach that retrieves the highest number

of documents around a specific topic, but are not concerned on finding one

specific document quickly.

recall =
NumberRetrievedRelevantDocuments

TotalNumberRelevantDocuments
(6.4)

As we can see on equation 6.4, the recall measures the ability of the system

to retrieve relevant documents. Thus, recall refers to the completeness of the

result set according to all relevant documents contained in the collection.

F1 measure

There are several measures that try to combine the value of precision and

recall, referred as the “F measures”, as they are known as F1, F2, and so on.

The most well known of them is F1, which is calculated based on equation

6.5

F1 =
2 ∗ precision ∗ recall

precision + recall
(6.5)

6.3 Recommendation Algorithm

In this section, we present KARe’s recommendation algorithm. As explained

in section 5.1.2, a user contextualizes his question according to his/her tax-

onomy, while the answer is searched in the taxonomies of the remaining peers

in the network. Section 6.3.1 describes how the algorithm accomplishes this,

Recommendation Algorithm 249

and section 6.3.2 presents the result of an experiment carried out in order

to evaluate the algorithm’s performance.

6.3.1 Description

For finding relevant documents in a collection, the standard IR vector model

approach computes the similarity between the user query and all the docu-

ments in the given collection, selecting the most similar vectors as the winner

documents (Baeza-Yates and Ribeiro-Neto, 1999). However, this approach

disregards any knowledge that users may have about the structure and con-

cepts of the artifacts being searched. This can lead to increased noise on

the search results. For instance, trying to search for the word “agents” in

Google 3 results in documents about several different kinds of agents (e.g.

chemical agents, software agents, real state agents and travel agents).

In KARe, the user classifies his/her documents according to a personal

taxonomy. In this way, similar documents are grouped by the user under the

same concept in the taxonomy tree. In addition to that, before submitting

the question, the user contextualizes the query, assigning it to a specific con-

cept in the taxonomy. By doing this, the user gives to the system an extra

hint on the query’s content. Aiming at reducing the noise of the search, our

algorithm exploits the taxonomic information supplied by the user to deter-

mine the region of the search space where the required information is more

likely to be found. Besides providing more accurate results, this approach

also reduces the computational complexity of the algorithm in comparison

with the standard approach. This happens due to the fact that the stan-

dard approach needs to search the whole documents collection (complete

search space) for an answer. Conversely, following our algorithm, KARe

only searchers particular regions of the search space.

To illustrate our approach, we go back to the example earlier presented in

section 5.1.2. Consider two users Mike and Joey, whose taxonomies are de-

picted in Figure 6.4. The taxonomies classify the user’s personal documents

and also serve to contextualize the user’s question. Suppose now that Joey

3http://www.google.com

250 Recommendation Algorithm and Implementations

makes the following question: “How should we deal with clients’ late pay-

ment?”, contextualizing it in the ‘Policy’ concept of his taxonomy. Referring

back to the example presented in section 5.1.2, we know that Mike had a

similar doubt in the past (i.e. he previously asked “What measures should

we take when a client is late with his payment for the acquired services?”)

whose answer is now classified under the concept ‘Premium’. But how can

KARe know about that?

Insurance

Life Health

My Work

Policies

Joey

Q

Mike

Health insurance

Client Competitors

Premium Standard

?

Figure 6.4: Taxonomies of Mike and Joey contextualizing documents and
questions

Our algorithm should be able to identify which concept in Mike’s taxon-

omy is more similar to the ‘Policy’ concept, where Joey’s question is contex-

tualized. Then, the answer can be searched within this concept. Essentially,

each of the concepts of the user taxonomy has a vectorial representation.

Each concept’s vector is a mirror of the peer’s collection index vector (also

referred as vocabulary), containing the weight of the keywords that appear

in the documents classified under the concept. Figure 6.5 illustrates a short

vocabulary index and a vector representing a given concept C, which con-

tains the index terms ‘client’, ‘insurance’ ‘pay’, and ‘health’, but does not

contain the terms ‘life’ and ‘customer’. In this figure, the used weights are

boolean (i.e. ‘1’ indicates the presence of an index term, while ‘0’ indicates

absence). Conversely, in our approach, the weights are given by a frac-

tion that measures the suitability of the index term to represent a certain

Recommendation Algorithm 251

concept. For finding the most similar concept to a given concept C, the

algorithm calculates the similarity between the vector representing C and

the vector of each of the concepts in the responder taxonomy.

client insurance pay health life costumer

Vocabulary index

1 1 1 1 0 0

Vector of Concept C

Figure 6.5: A short vocabulary index and a vector representing a given
concept C in the user taxonomy

The vector of a concept is calculated with basis on the vectors represent-

ing the documents classified under that concept. Besides the documents’

keywords, the concept label is also considered in the vector calculation. In

fact, not only the label of the concept itself, but in addition also the labels

of the ancestors of the given concept are taken into account, as has been

earlier proposed in (Adami et al., 2003). More precisely, this is achieved

by including the labels of all concepts of the taxonomy in the collection’s

vocabulary. Consequently, the label of the concept along with the label of

the concept’s ancestors are considered in the concept’s vector calculation.

The determination of the concept reference vectors follows the equation 6.6.

w(termi, conceptj) =

∑n
k=1 wi,k

n
(6.6)

Here, w(termi, conceptj) stands for the weight of the term “i” on the

concept “j”. Such an approach was based on the TF ∗IDF measure already

described in section 6.2.4. Equation 6.6 is basically an average formula,

which calculates concept vector C based on an average of the weight of

the keywords pertaining to all documents classified under concept C (thus,

variable wi,k represents the weight of the term “i” on the document “k”).

We call the process of finding the best matching concept in the responder’s

taxonomy query scope reduction. This is the main novelty of our approach.

In summary, the query scope reduction can be seen as a reduction in the

search space before we retrieve information from it, based on the fact that

252 Recommendation Algorithm and Implementations

the required information is more likely to be found in a specific region of

this space (in the example above, within Mike’s ‘Premium’ concept that is

more similar to the ‘Policy’ concept selected by Joey to contextualize his

query). Adding this process prior to the execution of the query, the quality

of our search increases, resulting in a less noisy result set, thus recommending

mostly pertinent documents to the users. In addition to that, it considerably

reduces the computational complexity of the algorithm since it diminishes

the set of documents to be searched.

It is important to note that each user has a different vocabulary index,

i.e. the vectors of the concepts in each taxonomy are created based on

different sets of keywords (index terms). Consequently, the first step on

the query scope reduction is to project the concept vector coming from the

questioner in the new space of the responder. This is made by calculating

the intersection between the index vector of the questioner and the index

vector of the responder. In this way, the concept vector coming from the

questioner may be projected into the vocabulary of the responder. This

projection is another novelty of our algorithm, specifically targeted at the

problem of coping with different semantic representations of a domain.

After the query scope reduction step, the answer to the user’s question is

searched within the documents classified under the best matching concept.

For that, all keywords of the user’s query are taken into account to select

the artifacts of the given concept. In addition to the query’s keywords, the

labels of the concept classifying the query and its ancestors are attached to

the query (as extra keywords), this way embedding the query with enriched

contextualized information. The documents are then ranked in a descending

order according to the similarity with the query, and the result set is finally

sent to the questioner. Our recommendation algorithm is summarized in the

pseudo-code shown in Listing 6.1. The similarity function is left general to

emphasize that although the algorithm now applies the cosine to determine

vectors’ similarity, this function can be substituted for other measures in the

future.

Recommendation Algorithm 253

Listing 6.1: An excerpt of KARe’s recommendation algorithm

procedure answer(concVectA , peerQuest , questioner)

{

//step 1: search the best matching concept for

//the scope reduction

projConceptVectorA := intersect(concVectA ,

indexB)

for each (concept on the user B context) {

s := similarity(currentConceptVectorB ,

projConceptVectorA)

if (s > maxSimilarity) {

bestConcept := currentConceptB

maxSimilarity := s

}

}

//step 2: search among the documents in the

// bestConcept

queryVector := createQueryVector (peerQuest ,

indexB)

for each (document in bestConcept)

documentList.add(document ,

similarity(queryVector ,documentVector))

documentList.sortBySimilarity ()

//step 3: send the answer back to

//the questioner

sendAnswer(documentList , questioner)

}

254 Recommendation Algorithm and Implementations

6.3.2 Evaluation

The theory behind our algorithm seems to be consistent, however in order

to prove that it actually brings any gains in the efficiency and accuracy of

our search, it is advisable to evaluate it through an experiment using real

data.

The ideal situation would be to experiment our algorithm against two

taxonomies classifying real questions and answers. However such dataset is

not available at the moment. Thus, we decided to simulate this dataset using

two taxonomies that classify scientific papers. The question is simulated by

the title of the paper and the answer is given by the paper’s body. This

seems reasonable because a question is usually short, providing us with a

few keywords for the search. The answer, on the other hand, tends to be

a longer piece of text. For performing the experiment, we have used two

existing taxonomies: the questioner’s taxonomy has been created by a PhD

student to collect papers of her interest, while the one of the responder is

taken from the ACM Computing Classification System 4. Table 6.1 presents

some statistics regarding these two taxonomies.

Questioner’s Taxonomy Responder’s Taxonomy

Number of Documents 250 315
Number of Concepts 28 15

Average Docs/Concepts 9 21

Table 6.1: Some statistics regarding the experiment taxonomies

The experiment may be divided into two main phases: 1) preparation of

the taxonomies; and 2) execution of the evaluation experiment. In the first

phase, the following activities were performed:

• the papers that were to be used as queries were selected. These papers

should be classified by both taxonomies so that we know which is the

contextualizing concept in the questioner’s taxonomy and the concept

the algorithm should find in the responder’s taxonomy;

4http://www.acm.org/class/

Recommendation Algorithm 255

• the selected papers were subtracted from the questioner’s taxonomy

to avoid bias (i.e. the keywords of the selected papers should not be

used to compute the concept vectors in the questioner’s taxonomy);

• the titles of all papers were subtracted from the papers classified by

both taxonomies to avoid bias (i.e. the title keywords should not

be used to compute the concept and document vectors in both tax-

onomies), as they were to be used as queries.

Figure 6.6 illustrates the process carried out to execute the evaluation

experiment. The first step is to manually contextualize the query, by as-

signing it to a concept in the questioner’s taxonomy. In fact, the informa-

tion regarding which concept should contextualize the query was already

known, since the queries were extracted from papers classified under both

taxonomies (refer to items 1 and 2 above). Next, the query (i.e. a pa-

per title) is preprocessed and submitted to the algorithm (the keywords of

the title, along with the contextualizing concept’s vector are sent to the

responder’s taxonomy). The algorithm then searches for a concept in the

responder’s taxonomy (query scope reduction). After the targeted concept

is found, the answer to the query is retrieved from the documents within

this concept. Finally, we compare the result set with the query, verifying if

the algorithm is able to: 1) find in the responder’s taxonomy, the concept

that classifies the paper whose title is the query; and 2) retrieve from the

responder’s taxonomy, the specific paper corresponding to the title used

as query.

We have compared the results of our algorithm with the standard ap-

proach based on the vector model (i.e. without the query scope reduction

step). Concerning our approach, we have considered two options: a) to

have on the result set only the best matching concept with the questioning

concept; and b) to have a small subset of concepts that best matched the

questioning concept. We evaluated these three approaches in terms of recall

(i.e. the fraction of relevant documents retrieved) and precision (i.e. the

fraction of retrieved documents that are relevant), calculated using equa-

tions 6.4 and 6.3 respectively. Then, the harmonic mean “F1” of recall and

256 Recommendation Algorithm and Implementations

Questioner's Taxonomy Responder's Taxonomy

Query = Title

Query

+

Contextual

Info

Query Scope

Reduction

Result Set

Compare: Is the paper

corresponding to Title in the

Resultset?

1

2

3

4

5

Figure 6.6: The evaluation experiment

precision was calculated based on equation 6.5 and used to compare our

results.

We performed 75 queries over our taxonomies, and the results are shown

on table 6.2. The first column of the table shows the results of the stan-

dard approach. The second, third and fourth columns show the results of

our approach when returning documents from one, two and three concepts

respectively.

Standard
Approach

1 concept 2 concepts 3 concepts

Number of Queries 75
Documents Found (DF) 69 25 37 43

F1 (DF) 0.920 0.333 0.493 0.573
F1 (RDF) 0.175 0.243 0.238 0.206

Comp. Complexity 158K 21K 33K 43K

Table 6.2: Experiment results

As previously illustrated in Fig. 6.6, our evaluation considers two im-

portant results. Hence, F1 was correspondingly calculated based on two

measures: 1) the number of times the algorithm finds the specific document

whose title is being searched (which we call DF) and 2) the retrieved num-

ber of related documents to the one being searched, given by the number

Recommendation Algorithm 257

Recall Variation

0.00000

0.20000

0.40000

0.60000

0.80000

1.00000

1.20000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73

Query Number

R
ec

al
l

Standard 1 concept

(A)

Recall Variation

0.00000
0.20000
0.40000
0.60000
0.80000
1.00000
1.20000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

Query Number

R
ec

al
l

Standard 2 concepts

(B)

Recall Variation

0.00000
0.20000
0.40000
0.60000
0.80000
1.00000
1.20000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

Query Number

R
ec

al
l

Standard 3 concepts

(C)

Figure 6.7: Comparison of recall measure taking the standard approach and our
proposed approach using (A) 1 concept, (B) 2 concepts and (C) 3 concepts

258 Recommendation Algorithm and Implementations

of documents that are classified under the concept being searched (which

we call RDF). For the F1(DF) value, the standard technique has a better

measure. However, this approach has performed poorly for the F1(RDF)

value, besides having high computational complexity (refer to the measure

of 158K, which corresponds to the number of comparisons performed by

the algorithm). Conversely, in general our approach returned more related

documents than the standard approach, thus having better F1(RDF). In

addition to that, our approach considerably reduces the number of compar-

isons needed to reach a result (see that for 1 concept, it needs 21K; for 2

concepts, 33K; and for 3 concepts, 43K comparisons).

Our first attempt considering only one responding concept resulted in

a low F1(DF) value compared to the standard approach. This led us to

consider adding flexibility to our algorithm, allowing it to select a small

set of concepts in the responder’s taxonomy. Taking this approach, we in-

creased the number of specific documents found. Besides, this enhanced

approach has two advantages over the standard one, as it retrieves more re-

lated documents (better F1(RDF) value), while having a low computational

complexity. In general, when we increase the number or searched concepts,

we increase the chance of finding the specific paper we look for, but we also

end up having a result set with more noise. This can be explained by the

fact that when finding the right concept, the approach searching only one

concept returns only relevant documents (i.e. documents pertaining to the

same concept as the specific paper being search). However, such approach

has the disadvantage of not finding the right concept many times. This be-

comes apparent by the comparison of the graphics exhibited in Figure 6.7.

These graphics exhibit comparisons between the standard approach and each

variation of our algorithm.

In summary, the results show that the best solution requires achieving the

right balance between the probability of finding very specific information and

the ability of retrieving related information (i.e. less noisy result sets). It

is also important to note that increasing the probability of finding specific

information also increases the number of comparisons the algorithm should

perform, thus turning the algorithm more computational complex. The

Concluding KARe’s Detailed Design 259

results also appoint in which direction our work should proceed, which is

enhancing the ability of the algorithm of finding the right concept. Once

this is done, it will not be necessary to increase the number of searched

concepts anymore. This solution will then combine both finding specific and

related information at once, while also keeping the computational complexity

very low.

6.4 Concluding KARe’s Detailed Design

In this section, we detail the design of the KARe system, started in chapter 5.

We begin by refining the AOR Agent Diagram (AD) presented in section 5.3,

which results in the AD depicted in Figure 6.8. This diagram is specifically

tailored for implementation in JADE, corresponding in MDA terms to the

Platform Specific Model (PSM) (a brief discussion on MDA is available in

section 3.7).

In Fig. 6.8, we find most of the agent and classes previously depicted

in the design AD presented in Fig. 5.9 (refer to section 5.3). These are

the Peer Assistant, the Artifact Manager, Concept, Taxonomy, and Knowl-

edge Artifact, further specialized into Document and Message. These are the

agents and objects relevant for the implementation of the part of the system

corresponding to the recommendation algorithm.

Besides these already known classes, seven other object classes have been

added in the diagram. Six of these objects are related to the recommenda-

tion algorithm described in section 6.3. Each knowledge artifact is parsed

by a Text Pre-Processor. During this stage, a number of operations are per-

formed on the artifact, such as stemming and stopwords removal (see section

6.2.1). After the pre-processing step, the content of the knowledge artifact

is represented as a set of Index Terms. In other words, an Index Term is

a keyword from a document or a message after being pre-processed. The

whole set of Index Terms consists the peers collection Vocabulary, and this is

the basis for the creation of the Inverted File Index (refer to section 6.2.2).

The Vector class concerns the vectors that represent each concept and each

260
R

e
co

m
m

e
n
d
a
tio

n
A

lg
o
rith

m
a
n
d

Im
p
le

m
e
n
ta

tio
n
s

name

myLocation

amLocation

userInterface

knowledgeBase

ontology

Peer Assistant

<<artificial>>

name

myLocation

paLocation

taxonomy

knowledgeBase

ontology

Artifact Manager

<<artificial>>

Text Pre-Processor

stopwordList: String[*]

String performStemming(word: String)
KnowledgeArtifact

date: DateTime

concept: Concept

fileName: File

Document

author: String

title: String

type: String

Message

originator: String

destination: String

subject: String

Taxonomy

concepts: Concept[*]

Concept getConceptRoot()

Vocabulary

indexTerms: IndexTerm[*]

Indexer

token: String

documents: List

Searcher

token: String

documents: List

Concept

artifacts: KnowledgeArtifact[*]

parent: Concept

conceptName: String

IndexTerm

token: String

artifacts: List

*1

1

1

1

1

1

1

*

*

*

* *

*

String ASKS_PEERASSISTANT;

String ASKS_QUESTION;

String ASKS;

String ANSWERS_ANSWER;

String ANSWERS_PEERASSISTANT;

String ANSWERS;

String PEERQUESTION_EXTENDEDMODEL;

String PEERQUESTION_TERM;

String PEERQUESTION_QUERY;

String PEERQUESTION_WEIGHT;

String PEERQUESTION;

String PEERANSWER_ARTIFACTTITLE;

String PEERANSWER_CONCEPT;

String PEERANSWER_SIMILARITY;

String PEERANSWER;

KareOntology

Vector

size: int

values: double[*]

1

1

1

1

1

*

1

*

*
1F

igu
re

6.8:
R

efi
n
ed

A
O

R
A

gen
t

D
iagram

Concluding KARe’s Detailed Design 261

knowledge artifact, enabling KARe to provide a recommendation. The In-

dexer class is responsible for maintaining the Inverted File Index, i.e. for

adding and removing artifacts to and from the index. Finally, the Searcher

class is responsible for consulting the index file when a particular query is

submitted.

The remaining class (KAReOntology) concerns the use of the JADE frame-

work for the system implementation. To communicate in the JADE agent

platform, agents need to agree on the semantics of the messages exchanged

by them. For that, the agents share an ontology that defines the concep-

tualization of the agents’ messages for a particular domain. In our case,

we developed the KareOntology as indicated by the respective class. The

attributes of this class reflect the structure of the communication ontology

as described in section 6.4.1.

The AD of Fig. 6.8 shows the attributes of all agent and object classes.

Concerning the agent classes, besides the domain-specific attributes (e.g.

name, taxonomy, knowledgeBase, etc.) we included the platform specific

attributes (e.g. myLocation, ontology). These last ones are essential for the

agent’s interaction in the system.

6.4.1 Agent Communication Ontology

As seen in section 3.5, an ontology is composed of a set of concepts and

relations, aiming at creating a shared understanding of a particular domain.

In this way, ontologies can be used as an agreed-upon vocabulary for ex-

changing information. This approach is adopted in JADE, which prescribes

that agents should communicate using a shared ontology. Figure 6.9 shows

the communication ontology used in KARe.

Fig. 6.9 shows five different entities specific to KARe, and the relations

among them. The ArtifactManager and PeerAssistant entities represent the

two KARe agents implemented in JADE. Agents play the central role on any

ontology defined to the JADE platform since most events and other entities

should be related to them.

There are three entities that are central to the communication process:

262 Recommendation Algorithm and Implementations

-name : string

-addresses : string

-resolvers : Agent

Agent

Agent::ArtifactManager Agent::PeerAssistant

is-a is-a

-term : string

-weight : float

-query : string

-mode : string

PeerQuestion

-artifactTitle : string

-similarity : float

-concept : string

PeerAnswer

-title : string

-concept : string

Artifact

owned-by

collaborates-with

asked-by answered-by

is-a

is-a

Figure 6.9: KARe’s communication ontology

the Artifact, a Peer Question and a Peer Answer. An Artifact is owned by

the Artifact Manager. Note that in our conceptual AD diagram (Fig. 5.8),

the Peer owns the Knowledge Artifacts. We differ this here because the im-

plementation does not consider human agents. Since the Artifact Manager

controls the access to the artifacts through the recommendation algorithm,

we modeled it as the owner of the artifacts in the eyes of the system. Most

importantly there are the Peer Question and Peer Answer entities, which

respectively represent the questions and answers exchanged in the system.

Both entities are Knowledge Artifacts asked and answered by Peer Assistants.

6.4.2 Interaction Modeling

Most of the interactions among KARe agents were previously modeled in sec-

tion 5.3.1. Here, we present only an AOR Interaction Frame Diagram (IFD)

that is especially suitable to explicitate the interface between two artificial

agents. In this way, Figure 6.10 depicts all interaction possibilities between

Concluding KARe’s Detailed Design 263

the Peer Assistant and the Artifact Manager, the two agents targeted so far in

KARe’s implementation. These interactions may be directly inferred from

the previously created AOR interaction diagrams (refer to chapter 5).

searchAnswer

Peer Assistant Artifact Manager

keyQuestion,vectConc

provideDocument

docs

provideExplanation

question, answer

noAvailableArtifact

storeArtifact

concept,question,answer,

eval

Figure 6.10: AOR Interaction Frame Diagram explicitating interface be-
tween PA and AM

Aiming at illustrating how such interaction is materialized into code, list-

ing 6.2 illustrates how the SearchAnswer message from the PA to the AM

is implemented in JADE. Such interaction is achieved through speech act,

according to the FIPA ACL5 format adopted in JADE. Following this stan-

dard, the message has a content, a sender, a receiver, is written in a specific

content language (in this case, FIPA SL), and uses the vocabulary speci-

fied in a particular ontology (here, the communication ontology previously

described in section 6.4.1)

In the remaining of this section, we model the interactions between the

system objects instead of agents using UML Sequence Diagrams. Note that

in such a diagram, messages between objects are actually method calls,

which directly access the object’s code. This contrasts with AOR ISDs,

5http://www.fipa.org

264 Recommendation Algorithm and Implementations

where messages between agents are speech acts, which should be treated by

each agent, before perfoming an action in response.

Listing 6.2: Coding agent communication through speech act

// create the question , identifying

// communication performative

ACLMessage msg = new ACLMessage

(ACLMessage.QUERY_IF);

// set receiver ’s agent identifier

msg.addReceiver(new AID(artifactManagerName ,

AID.ISLOCALNAME));

// set sender ’s agent identifier

msg.setSender(this.myAgent.getAID ());

// set the language used to write the msg

msg.setLanguage(codec.getName ());

// set the communication ontology

msg.setOntology(ontology.getName ());

// add the content of the message , i.e. the

// SearchAnswer message parameters

// keyQuestion , vecConc

manager.fillContent(msg , keyQuest_vecConc);

// send message

this.myAgent.send(msg);

Indexing

We start by analysing the indexing process, depicted in Figure 6.11. The

indexing process is triggered by the Artifact Manager (AM). The Indexer is the

class that receives the method call createIndex from the AM and is responsible

Concluding KARe’s Detailed Design 265

for handling the process of index creation. For that, the Indexer receives two

parameters: 1) a list of documents to be indexed and 2) the taxonomy that

classifies these documents. The first step towards the creation of the index

is to parse each Concept of the Taxonomy. The parseConcept method triggers

the parseArtifact method, to parse each Knowledge Artifact contained in each

given Concept. This step is necessary to create the vocabulary and index

terms of the system. At this point, the TextPreProcessor is called to perform

stemming and stopwords removal (parseToken method) in each artifact.

i: Indexer p: TextPreProcessor

createIndex(List: documents; Taxonomy: tax)

parseConcept(Concept: c; List: docs)

parseArtifact(File: artifact)

parseToken(String: token)

createIndexElement(String: token; int: count; KnowledgeArtifact: artifact)

performFeatureSelection(int: vocabularySize)

v: Vocabulary it: IndexTerm

create(String: token; int: count; KnowledgeArtifact: artifact)

v: Vector

createVector(int: vocabularySize)

calculateWeights()

getTerm()

AM: ArtifactManager

Figure 6.11: UML Sequence Diagram modeling the indexing process

Next, each keyword is then inserted in the vocabulary (createIndexEle-

ment and create methods). For that, we create an IndexTerm instance to

represent the processed keyword. Following this, the Indexer should per-

form a feature selection operation (see section 6.2.2) to reduce the index

file to an appropriate size (performFeatureSelection method). Once the final

266 Recommendation Algorithm and Implementations

index is determined, the Indexer can create the Vectors for the concepts and

knowledge artifacts. On this step, the weight for each term in each artifact

and in each concept is calculated and stored on the Vectors (getTerm and

calculateWeights methods).

Searching

Figure 6.12 depicts the object’s interaction for performing a search in the sys-

tem. The searching process describes how the system finds suitable knowl-

edge artifacts to respond to a question submitted by the AM. This process

corresponds to the SimilarArtifacts function presented in the textual de-

scription of R1 rule of Fig. 5.18, implementing the reaction taken by the

AM when receiving an incoming knowledge request.

s: Searcher p: TextPreProcessor

query(String: question; Vocabulary: v; Vector: conceptVector)

parseQuery(String: question)

normalizeConceptVector(Vector: conceptVector)

: Vector

getVector(Concept: c)

storeSimilarity(Vector: conceptVector; Vector v)

getBestConcepts(int: x_bestConcepts)

c: Concept

getArtifacts()

getConcept()

createQueryVector(String: question)

storeSimilarity(Vector: vQuestion; Vector: artifact)

returnDocumentList()

AM: ArtifactManager

projectConceptVector(Vector: conceptVector)

Figure 6.12: UML Sequence Diagram modeling the searching process

The main component here is the Searcher, which centralizes the query

handling process and interacts with the user. When a question is made, the

Prototypes 267

first step is to pre-process it (parseQuery method). In this way, the question

has the same format as an artifact, i.e. it has the stopwords removed and

stemming performed. After parsing the question, it is important to project

the questioner’s vector into the responder’s vocabulary (projectConceptVector

method). In other words, the concept vector should be translated to the

responder’s vocabulary.

At this point, the actual search begins by finding a suitable concept on the

responders taxonomy, similar to the questioning concept. In other words,

the query scope reduction is executed. In this step, the getVector, storeS-

imilarity and getBestConcepts methods are executed. First, the questioning

concept vector should be compared to each concept vector on the destination

taxonomy. For that, each responder’s concept vector should be retrieved and

checked against the questioning concept vector. On the end of this process,

we will be able to retrieve the best matching concepts with the question-

ing concept. To calculate the similarity, we apply equation 6.1, already

described in section 6.2.4.

Once the algorithm finds the right concept, the artifacts classified under

this concept are retrieved (getConcept and getArtifacts methods), enabling

their comparison with the question itself. Next, the Searcher creates a vector

containing the question keywords. This vector is compared with the vectors

of the retrieved knowledge artifacts (storeSimilarity method). The similar-

ity between each artifact and the incoming question is used as a ranking

function. The ranked artifacts are finally returned to the user, presenting

them in descending order according to the artifacts similarity measure when

compared to the query.

6.5 Prototypes

Two prototypes of the KARe system were implemented: a desktop computer

version and one for access in a handheld device. These two prototypes are

described in the sequence.

268 Recommendation Algorithm and Implementations

6.5.1 Desktop Prototype

The main purpose of having KARe as a desktop system is to allow orga-

nizational members to exchange knowledge while organizing their personal

knowledge items locally (Ludermir et al., 2005). The system agents should

mediate knowledge exchange in the peer-to-peer network, providing recom-

mendations according to the algorithm presented in section 6.3.

Figure 6.13 shows a screenshot of the desktop prototype. On the left

part of the window, the figure depicts a user taxonomy, showing in a tree

of concepts, how the user structured his/her knowledge. On the top, there

is a text box where the user enters his question, followed by a “Search”

button. Having inserted the question, the user may press this button to

trigger the searching mechanism. The “Results” of the search are shown

in the right side of the screen, classified by peer (the peer from which the

artifact was retrieved), and ordered by the similarity of the artifact regarding

the question submitted by the user.

Figure 6.13: A screenshot of the desktop prototype

The desktop prototype was developed as two integrated components, as

shown in Figure 6.5.1. Such component scheme aims at providing a plug-

gable architecture with replaceable parts. The components communicate

with each other via well defined interfaces facilitating the adaptability of

new components into the architecture. For instance, the information re-

trieval component could be replaced by any other “searching” mechanism

Prototypes 269

if more appropriate techniques are developed in the future. Moreover, we

could use any agent platform that conforms to the FIPA specifications to

compose the recommender agents component.

Recommender Agents

Information Retrieval

Figure 6.14: Two components composing the desktop prototype

The prototype was completely implemented in Java. The Recommender

Agents component was implemented using the JADE framework 6. JADE

works as a middleware for the agents communication. The agents are imple-

mented via Java classes that communicate with each other via Java RMI.

To enable their communication, an ontology was developed, as presented in

section 6.4.1. This ontology has been designed using the Protégé Ontology

Editor 7, and implemented in Java classes using the Beangenerator Protégé

plug-in 8.

The implementation of the Information Retrieval component is based

on the use of the Lucene library 9. Lucene is a search engine library that

contains implementations of well-known algorithms and components used in

our system, such as: the inverted file index, a stopword remover component

and the stemming algorithm. Persistence of the relevant metadata regarding

knowledge artifacts was achieved with the use of XML10 files. The taxonomy

is also represented in an XML file, structured as prescribed in a particularly

developed XML schema.

6http://jade.tilab.com/
7http://protege.stanford.edu/
8http://acklin.nl/page.php?id=34
9http://lucene.apache.org/

10http://www.w3c.org

270 Recommendation Algorithm and Implementations

6.5.2 Handheld Prototype

The KARe handheld prototype (Ludermir, 2005) is based on the assumption

that suitable responders to a specific question can be selected based on their

geographical proximity to the questioner. This assumption comes from the

realization that people usually share spaces with individuals with whom they

share interests, e.g. workmates within an organization, researchers in a con-

ference, and classmates in an educational institution. This version of KARe

fits into the category of the so-called nomadic services, which comprehends

network services that are accessible by mobile computing independently of

the user’s geographical location (Ludermir, 2005).

By changing user’s location, the recommendation is likely to change as

well. In contrast, if you try to get a recommendation from the desktop

system, the result is the same until the document index is updated. This

happens because, as seen in the design of KARe’s desktop system (see for

example, Fig. 5.13), the system searches for knowledge artifacts by broad-

casting the knowledge request to all peers connected to the network. Thus,

such design is slightly modified to accommodate the new search mode. Af-

ter receiving a request from the user, a search is triggered when the system

senses the presence of another peer in the vicinity. The request is then sub-

mitted solely to this peer. In this way, the handheld prototype also avoids

the problems of scaling the system to a great number of peers, which still

remains to be targeted in the desktop version.

The development of the handheld prototype adds an extra component

on top of the ones previously described in section 6.5.1, as shown in Figure

6.15. The interface between the new Peer Discovery component and the

Recommender Agent component is achieved by wrapping up outputs of the

former into Agent Communication Language (ACL) messages that are then

sent to the latter.

Figure 6.16 shows the distribution of the components of KARe. The

elements are physically distributed in three locations: handheld computers,

desktop computers and a server. The server can be federated by many

stations, but is here shown as a single entity for simplicity. The dashed

Prototypes 271

Recommender Agents

Information Retrieval

Peer Discovery

Figure 6.15: Extra component for the development of the handheld proto-
type

arrows show the dependency between components, and the numbers within

the circles show execution ordering.

User's PC

User A

WiFi

User B

Agent’ Server

User

Knowledge

Base

Internet

Directory Facilitator

Peer Assistant

User's PC

Artifact Manager

User

Knowledge

Base

IR Algorithm

Peer Assistant

Peers

Registry

143

6

4

5

7

10

11

12

13

16

iPAQ

KARe

Scanner

iPAQ

KARe

Scanner

15

1

Artifact Manager

IR Algorithm

User

Questions
User

Questions

8

9

Bluetooth2

Figure 6.16: Distribution of the fixed and handheld components

As can be noted, each user has access to one handheld and one desktop

computer which are connected via a wireless connection (802.11x). Each

handheld is responsible for sensing the presence of other devices in the vicin-

ity and to advertise its presence to its neighbors. The device discovery is

performed using a bluetooth link. When another handheld is detected, the

272 Recommendation Algorithm and Implementations

information about the new device is sent to the user’s desktop computer.

Such information is forwarded to the server to verify whether the found

device is part of KARe peer-to-peer network or not.

When presence of another KARe peer is sensed, the Peer Assistant Agent

contacts the “respondent” Peer Assistant to trigger the recommendation

process. If the “respondent” peer recommends any artifact, the user is con-

tacted on his handheld. Bellow we describe each step shown in Fig. 6.16 in

detail.

• Device Discovery (1): In each handheld there is a module named

“KARe scanner”. This module collects information about the devices

found in the vicinity via bluetooth and triggers the device verification

process.

• Device Verification (2, 3, 4, 5, 6): Once the handheld is detected

and collected identification information about another device, it sends

this information to the user’s computer (step 2). The user’s Peer

Assistant receives the information and verifies whether it corresponds

to another peer or not. For that, it forwards this information to the

Directory Facilitator agent (step 3) that consults the peers services

database to check for the peer’s existence (steps 4 and 5). When

it knows about the discovered device status, the Directory Facilitator

sends its findings back to the questioner Peer Assistant (step 6). If the

discovered device is a peer in the KARe network the recommendation

process is triggered, and otherwise it is aborted. Figure 6.17 (A) shows

the resulting screen in the handheld after identifying the devices that

run KARe.

• Recommendation process preparation (7, 8): Before actually starting

the recommendation process, the Peer Assistant agent consults the

User Questions database. If there are any questions, the Peer As-

sistant wraps each question with the appropriate format for sending

them over the network.

• Recommendation process (9, 14): This process is the core of the sys-

Prototypes 273

tem. It is the actual simulation of the question-answering process.

The first peer sends a question (step 9) which the second peer tries to

answer (step 14) by recommending a selection of artifacts (e.g. docu-

ments and messages).

• Artifact search (10, 11, 12, 13): These steps are the mechanism that

enable the recommendation amongst peers. When the Peer Assistant

receives a question, it forwards it to the Artifact Manager agent (step

10), since the latter knows how to match the question against the

User Knowledge Base. This matching is performed by the already

described Information Retrieval algorithm (steps 11 and 12). Fi-

nally the retrieved artifacts are sent back to the Peer Assistant (step

13).

• User notification (15, 16): After receiving the answer for its question,

the Peer Assistant sends a notification to the user’s handheld to warn

him/her that new artifacts were recommended. Figure 6.17 (B) shows

the screen with the notification of new recommendation from another

peer.

(A) (B)

Figure 6.17: Screenshots of the handheld prototype

274 Recommendation Algorithm and Implementations

As in the desktop version, the agents are arranged in a peer-to-peer fash-

ion composing a recommender system running on desktop computers. The

Recommender agents and Information Retrieval components are practically

intact. However, a different GUI has been developed to run in the iPAQ

handheld device. To overcome problems with the limited resources on such

devices, the recommendation service was kept in the desktop. This appli-

cation communicates with the iPAQ through a wireless link to receive the

user’s inputs and send back recommendations. The GUI was implemented

using the Personal Profile API 11 implementation of the Java 2 Micro Edition

version (J2ME). Finally, the Peer Discovery component was implemented

using the Interconnect architecture (Uiterkamp, 2005), developed to enable

HTTP communication between service hosts and nomadic service compo-

nents.

6.6 Related Work

The most distinguishing feature of KARe is given by the consideration of tax-

onomic information to recommend knowledge artifacts. We have no knowl-

edge of other initiatives that apply taxonomies to aid the process of ques-

tioning and answering, adding to the user’s query the contextual information

provided by the concept to which this query is assigned. Other than this,

KARe’s distinction is materialized in the query scope reduction stage of the

recommendation algorithm, in which a concept of the questioner’s taxon-

omy is matched with concepts from the responder’s taxonomy. Matching

taxonomies has been targeted before, having gained considerable strength

in the last few years, especially boomed by developments in the Semantic

Web. In this section, we just cite two initiatives more closely related to ours.

There are mainly two ways of conciliating two different taxonomies A and

B. One focuses on mapping labels associated with a concept of taxonomy A

into concept labels of taxonomy B. Among the works that adopt such tech-

nique, some use only syntactical information of the labels, simply matching

11http://jcp.org/aboutJava/communityprocess/final/jsr062/index.html

Conclusions and Future Work 275

keywords, while others go beyond this, considering in addition to syntax,

semantic information about the labels, usually supported by a dictionary

or thesaurus. This is the case of the CtxMatch algorithm (Bouquet et al.,

2003), a linguistic-based approach which adopts WordNet lexical reference

system12 to disambiguate and stem labels. This algorithm indicates the re-

lationship between two matched labels, i.e. it informs if the label found in

taxonomy B is equal, less specific or more specific than the selected label

in taxonomy A. The problem with this kind of technique is that it usually

results in low recall. Although the used dictionaries or thesaurus provide

valuable additional information about the labels, this if hardly enough and

a match in the responding taxonomy is rarely obtained (Avesani et al., 2005).

Our algorithm adopts a different approach of matching taxonomies, by

considering not only the labels representing the concepts of the taxonomy

but also the keywords of all documents classified under the concept. This

adds a great deal of information to the concept representation, usually im-

proving the algorithm’s performance at least in terms of recall. A similar

approach to ours is adopted by (Avesani et al., 2005). However, this work

tries to identify the semantic relationship between the two corresponding

nodes, while our approach limits itself to finding one or a few most similar

nodes in the responder’s taxonomy. In addition to that, another difference

may be highlighted. For functioning properly, the approach of Avesani et al.

(2005) requires the two taxonomies to share documents, as the similarity

between them is calculated on the basis of this redundancy. Our algorithm

does not require such duplication, working well even if there is no redundant

information.

6.7 Conclusions and Future Work

The main focus of this chapter was the information retrieval algorithm im-

plemented to generate recommendations in the KARe system. Besides, we

presented the remaining of the system’s detailed design and details on pro-

12http://wordnet.princeton.edu/w3wn.html

276 Recommendation Algorithm and Implementations

totype implementations. In this respect, the reader is able to see how the

previously high-level design is transformed into concrete elements of a system

(such as XML files and Java code) and then implemented in two different

prototypes.

The results of the algorithm evaluation experiment showed considerable

gains in the recommendation quality are achieved by using the proposed

approach. In the future, we aim at confirming this conclusion by experi-

menting the algorithm against different and larger datasets. However, we

already envision some possibilities of enhancing the query scope reduction

performance. Our research agenda for the future includes the experimenta-

tion with the smoothing technique presented in (Sona et al., 2004) to improve

the representation of the taxonomic concepts. This technique uses informa-

tion from other concepts in the taxonomy (e.g. parent and siblings) in the

vector calculation for a given concept C. Concept vectors of neighboring con-

cepts are propagated to the vector representing C, although with reduced

weight, according to the distance between these concepts and concept C.

This technique attained gains in classifying documents into particular tax-

onomy nodes (Sona et al., 2004), a different but related application to ours.

Smoothing is a technique targeted at situations in which there are many

nodes classifying only a few knowledge artifacts. Thus, such technique is

suitable for initial stages of system use, when KARe peers are starting to

collect their documents and exchange questions and answers.

Something else that remains unanswered here regards the possibility to

scale the system to a larger set of peers. The developed algorithm consumes a

great deal of resources, so scaling it up should pose a big challenge, especially

in the case of the desktop version of the system. We foresee two possibilities

to be investigated to enhance system performance. The first one regards the

beforehand calculation of the nearest neighbor peer to answer to requests

on specific subjects. Nearest neighbor calculation is a common practice in

the context of recommender systems and may follow existing algorithms

(Montaner et al., 2003). The other idea we could explore alternatively or in

addition to this one is to set up a similarity threshold, limiting the number

of documents exchanged between Peer Assistants to reduce network traffic.

Conclusions and Future Work 277

Other future research direction include the implementation of the Broker

agent and KARe’s proactive functionalities, not targeted here. The question

and answering functionality was selected for first implementation for being

in the core of the system’s proposal, but also for offering more challenging

problems from a technical point of view than the other system features.

278 Recommendation Algorithm and Implementations

Chapter 7

Conclusion

“And this way, arriving and leaving

are only two sides of the same journey.

The train that arrives is the same train

that leaves.” Milton Nascimento

This chapter presents a summary of the main conclusions and contribu-

tions of this work and outlines a number of directions for further research.

The chapter is organized as follows: section 7.1 presents a general over-

view of the main results of this. After this brief summary, section 7.2 ex-

amines these outcomes more closely, inspecting how each of the research

questions were targeted and how they advance related state of the art. Fol-

lowing, section 7.3 sets our future research agenda.

7.1 Results Overview

In the struggle to survive and compete in face of constant technological

changes and unstable business environments, organizations recognize knowl-

edge as its most valuable asset. Consequently, they often invest on KM,

seeking to enhance their internal processes and available technologies to sus-

tain and disseminate knowledge throughout their environment. This thesis

advances the state-of-the-art in this area in two distinct ways:

279

280 Conclusion

1. by providing ARKnowD, a methodology to guide the development

of KM information systems and practices fitting the particular needs

and requirements of an organizational setting;

2. by presenting KARe, a socially aware recommender system that sup-

ports knowledge creation and sharing by simulating the natural social

process one gets engaged in to fulfill a knowledge request.

The work on the ARKnowD methodology was triggered by the realiza-

tion that although claiming to bring synergy and innovation to organizations,

KM solutions are often reported not to fulfill their promises, being conse-

quently abandoned or misused. In this thesis, we examined some of the main

challenges of KM settings, concluding that before a solution is developed or

adopted, the organizational environment needs to undergo thorough analy-

sis. Such analysis is aimed at identifying from the environment’s character-

istics, those that may hamper effective KM (and should thus be overhauled)

and those that may contribute to it (and should thus be reinforced).

The observation of these challenges also showed that most of them are

closely related to the fact that current solutions fail to comply with the

organization’s social dimension. In particular, we realized that besides fo-

cusing on the organization’s overall objectives and strategies, seeking for an

effective KM solution requires special attention to be payed to knowledge

holders, i.e. people working in the organization’s several points of actions.

This realization led to the adoption of constructivism as the theoretical ba-

sis of our work. By focusing on constructivist approaches and contrasting

them with prominent KM theories, we were able to distill the essence of

what characterizes a conducive environment to KM. We called these result-

ing principles the Constructivist KM building blocks. Such building blocks

can be used as guidance to facilitate the aforementioned analysis, assist-

ing the identification of KM inhibitors and drivers within the organizational

environment.

Aiming at supporting the clear understanding of the organization’s so-

cial dimension, observing its compliance to the Constructivist KM building

blocks, ARKnowD gives special attention to the initial phases of system

Results Overview 281

development. In this way, the methodology aims at eliciting and modeling

the requirements of the system-to-be, by considering both the organization’s

overall objectives and the knowledge holders’ perspective. Furthermore, be-

yond analyzing the domain, ARKnowD consistently conducts to the design

of the proposed solution, modeling the system entities, interaction and in-

ternal behavior.

Verifying the appropriateness of the agent paradigm for modeling hu-

man organizations, we created ARKnowD as an intrinsically agent-oriented

methodology. However, by examining available work on agents, we realized

that a single engineering approach is not fit for all domains and cases. Con-

versely, existing agent-oriented engineering methodologies should be com-

bined on demand, based on the right set of concepts and techniques to

target a specific domain or situation. Therefore, we took some effort in un-

derstanding which are the agent-related concepts that most suitably describe

the KM domain, especially capturing the analysis regarding Constructivist

KM building blocks. For that, we built an ontology of agent concepts that we

then used to evaluate, adjust and coherently combine the notations adopted

in ARKnowD.

In order to evaluate ARKnowD, we provided an experimentation of the

methodology, applied to analyze a fictitious scenario that illustrates some of

the main KM challenges. As a result of this analysis, proposals for changes

in the organization’s structure and processes arise. Particularly, the require-

ments for a recommender system to support such setting are elicited. This

led us to the proposal of KARe, the second main contribution of this work.

Still following ARKnowD, we fully designed KARe, demonstrating that AR-

KnowD is able to take the developer from a detailed domain analysis to a

consistent design activity.

Besides using it as a case study for ARKnowD’s methodology, this work

also explored the suitability of the KARe system to support KM. KARe

enables users connected in a peer-to-peer network to locally organize their

knowledge artifacts, while sharing them through questions and answers. By

simulating the question and answering process, naturally undertaken when

people seek for knowledge, KARe aims at smoothly fitting into organiza-

282 Conclusion

tional practices. Up to now, KM systems had mostly targeted the formal-

ization and exchange of explicit knowledge, in the form of documents or

other physical artifacts, often annotated with metadata, and classified by

taxonomies or ontologies. Investigations surrounding tacit knowledge have

been so far scarce, perhaps by the complexity of the tasks of capturing and

integrating such kind of knowledge, since it is usually confined on people’s

mind. Taking a flexible approach on supporting this kind of knowledge con-

version, KARe relies on the real potential of social interaction to support

knowledge creation and sharing. This emphasis is motivated by the assump-

tion that such a process and, especially question and answer exchanged by

community members, may eventually result in the disambiguation of tacit

knowledge.

The core of the KARe system regards a recommendation mechanism that

mediates the questioning and answering process, providing users with knowl-

edge artifacts to satisfy their knowledge needs. Our work comprised the de-

scription, implementation and evaluation of such mechanism. In this respect,

this thesis presents an innovative information retrieval technique, based on

semantic information encoded in taxonomies that structure the artifacts col-

lection. This information is applied to reduce the search scope, thus dimin-

ishing computational complexity when compared to standard approaches,

while providing result sets with less noise (i.e. more relevant documents) at

the same time. The technique has been implemented in a prototype of the

KARe system, and evaluated in comparison to a standard approach. Results

of this evaluation showed the gains achieved by applying our technique, also

leading to the identification of points of improvement.

7.2 Research Questions Revisited

In this section, we focus more deeply at the realized work, discussing our

main findings. More specifically, we revisit each research question, presenting

in detail how each of them was addressed and what are the strengths and

weaknesses of the proposed solutions in comparison with related work.

Research Questions Revisited 283

7.2.1 Applying Agents to Support Constructivist

Knowledge Management

Our first research question (RQ 1) regards the suitability of the agent-

oriented paradigm to support Constructivist KM. In chapter 2, we have

started targeting this question by analyzing the state of the art in KM, in

order to identify:

• the main challenges of such settings;

• background theoretical work that could lead us to the proposal of more

effective approaches;

By examining both practical issues and theories and by taking construc-

tivist hypotheses into account, we were able to identify a few principles that

may characterize the KM environment, leading to less resistance towards

KM systems and practices. In general, such principles refer to a less techno-

centric view on KM, focusing more attentively in the social aspects that

naturally motivate knowledge sharing and learning in practice. We defined

these principles as the Constructivist KM building blocks, claiming that

they should be pursued both by KM researchers and practitioners.

Next to this, we also investigated the ability of agents to model human

organizations, representing important entities inherent from these settings,

such as human, organizations, organizational units, and information sys-

tems. Although this ability has been largely theoretically advocated, most

current agent-oriented approaches still address system development by mod-

eling artificial agents (i.e. the ones composing a system) from the start. By

doing so, these approaches fail to link system requirements with the real

needs and wants of the system stakeholders, as this important informa-

tion remains untouched and hindered. Contrarily, when profiting from the

agents’ inherently social and cognitive nature, the analyst is able to create a

domain model that helps uncover such details. Specifically, agents are pow-

erful abstractions for capturing human’s beliefs and perceptions, to model

their interactions, and for capturing the commitments they establish with

284 Conclusion

each other on the organization’s behalf. The understanding of these elements

is paramount for the adoption and proposal of effective KM information sys-

tems and practices, confirming the suitability of the agent paradigm for our

purposes.

Regarding the suitability of agents, we were particularly interested in un-

derstanding to which extent agents can be used to allow capturing and rea-

soning about Constructivist KM building blocks. This topic was discussed

in chapter 2. Moreover, it is further clarified in chapter 3, which provides a

deep understanding of the agent concepts in the ontology presented, and in

the practical application of our proposed approach in the remainder of this

thesis. In particular, chapter 4 applies it for domain and system analysis

and chapter 5, for system design.

Still in chapter 2, we analyzed diverse agent-oriented software engineer-

ing methodologies and languages. We did not have the purpose of being

complete regarding the available work in this area, but rather aimed at il-

lustrating how each of the approaches we explored targets the development

of agent-oriented systems. Moreover, we were especially interested in using

them as subsidies for the proposal of our own approach, specifically focused

on the KM domain.

7.2.2 Developing a Methodology to Support Knowl-

edge Management

In chapter 2, we concluded that each organizational environment is unique

and should be closely inspected before a KM solution both in terms of prac-

tices and information systems, is proposed or adopted. But how should we

proceed in this analysis? This brings us to our second research question (RQ

2), which regards the development of a methodology to support KM.

In particular, we intended to propose a comprehensive methodology that

targeted all system development activities. Here, system not only refers to

information systems, but also considers human systems. In this way, a KM

solution can be understood as a set of practices or as an information sys-

Research Questions Revisited 285

tem to be adopted. In both cases, according to the ARKnowD methodology,

proposed in chapter 3, system development is an iterative process consisting

of the following activities: requirements elicitation, early and late require-

ments analysis, and architectural and detailed design. As can be noted by

our focus on requirements, great strength was given to the initial develop-

ment activities, aiming at grasping the idiosyncrasies of each organizational

setting.

Given the appropriateness of the agent development paradigm, our meth-

odology was tailored to profit from the agent social and cognitive nature,

using its underlying concepts as modeling constructs. In addition to that,

one of our main assertions is that in the context of development methodology,

no silver bullet exists. Instead, existing work on agent-oriented software

engineering should be combined, aiming at exploring their strengths while

minimizing their weaknesses, giving each modeling setting or situation.

Having experimented the combination of two specific existing agent-ori-

ented approaches, namely the Tropos methodology and AORML, we are

now able to define a general set of guidelines, supporting system developers

on merging other methodologies and languages. To sum up, these guidelines

are the following:

1. closely consider the characteristics of the targeted domain before se-

lecting the methodologies and languages to be applied. Characteristics

of the domain have a direct impact on the approaches selection. For

example, if the problem being targeted is life threatening, a formal

approach is needed to prevent undesirable failures. However, if the

targeted domain comprehends an organization in need of KM support,

an approach supporting extensive domain analysis as the one we pro-

pose is advisable to enable the organizational environment to be well

understood before a solution is proposed;

2. once the methodologies and languages to be combined are chosen,

verify if together, they are consistent and cover all important agent-

oriented cognitive concepts useful in the targeted case. If not, extend

the approaches where needed, providing both a conceptualization of

286 Conclusion

the missing elements and corresponding modeling constructs. This as-

sessment can be done by using a reference ontology of agent concepts,

as the one proposed in chapter 3.

3. provide a clear method to map the concepts of the adopted notations,

in order to assist the analyst and designer that are going to apply the

combined approach. In this work, we adopted a MDA-inspired trans-

formation method, involving the transformation of a source language

to a target notation, having the metamodels of the two languages as

input for the transformation process. Other methods may be pursued,

including the other ones also proposed by the MDA initiative.

4. provide a set of guidelines for the use of the resulting approach. This

includes information on how to apply each modeling construct, and in

which modeling activities. Moreover, it should cover information on

which step to realize the mapping of concepts, as established by the

method mentioned above.

Chapter 3 describes all the topics listed above, i.e. it gives the reasons

behind the selection of the two approaches composing ARKnowD, presents

an evaluation of ARKnowD’s notation, describes a transformation method

between the two adopted approaches, and grants ARKnowD’s users with

guidelines on the use of the methodology. In addition to that, chapter 4

and chapter 5 illustrate the use of ARKnowD in practice. They start with

the analysis of a scenario that, although fictitious, exemplifies important

issues of KM settings, and finish with the detailed design of a recommender

system, whose prototyping is described in chapter 6.

Our second research question has been further refined in two sub-ques-

tions dealing with specific methodological issues. From now on, this section

targets each of these two sub-questions.

Agent Cognitive Concepts and Development Activities

As mentioned in section 7.2.1, one of the biggest strengths of the agent

paradigm for our purposes is given by the social and cognitive nature of

Research Questions Revisited 287

agents. Nevertheless, restating RQ 2.1, how can we connect the concepts

underlying agents and the system development activities? If this question

remained unanswered, it would be hard to fully profit from this important

characteristic of the agent paradigm in practice.

We realized by the study of KM state of the art (reported in chapter

2) that KM settings are complex domains, highly unstructured and greatly

influenced by their human dimension. Thus, in one way or another, most

concepts characterizing agent’s rationale, such as intention, perception and

belief, are relevant here. Moreover, other concepts that guide the under-

standing of the social relations between agents, such as dependency, del-

egation and commitment are of utmost importance for the domain to be

correctly grasped. Other essential concepts are the ones relating to agent’s

actions and perceptions, such as plans, and communicative actions, which

lead agents to collaborate and change their inhabiting environment. Finally,

we emphasize the importance of considering not only active entities of the

environment but also modeling the passive ones, i.e. the resources that

agents use when pursuing their goals. We discussed all these concepts in

chapter 3, where we proposed an ontology of agent concepts to enable the

design and the evaluation of agent-oriented modeling languages.

However, this discussion does not clarify in which modeling activity each

of these concepts are to be used. This is more clear in the proposal of

our transformation method between Tropos’s notation and AORML. AR-

KnowD starts by the analysis of the goals of the stakeholders. This choice

was adopted by several work in requirements analysis area, for the realiza-

tion that stakeholder’s goals directly connect to their real wants and needs

(Kavakli and Loucopoulos, 2005). Furthermore, a prominent work on KM

(Nonaka and Takeuchi, 1995) has appointed organizational intention (which

refers to strategies and goals of the organization) as one of the main driving

forces behind the adoption of effective KM practices. In the first develop-

ment stages of requirements analysis, details regarding processes are hardly

necessary. Instead, we limit ourselves in understanding the dependencies

between the agents of the domain, and determining their plans (a high level

view on processes). This maintains the analysis on the right focus, i.e. to de-

288 Conclusion

termine the requirements of the system under development, preventing the

analyst to get lost among unnecessary details of the organizational setting.

The design activity is the point where all details regarding the system

should be completely uncovered. In this moment, all relevant information

concerning agents’ internal characteristics, beliefs, perceptions, actions and

commitments to other agents are finally designed. The use of the two no-

tations is tightly coupled, enabled by the adopted transformation method.

This allows system functionalities to be connected back to the elicited re-

quirements.

When Agent Cognitive Concepts become Concrete

Agent-oriented underlying concepts have been extensively discussed in lit-

erature. However, how these concepts connect to concrete parts of informa-

tion systems is still open for discussion (refer to RQ 2.2). Our work takes

the system developer all the way from requirements analysis to system im-

plementation and we are able to make links from the modeling constructs

referring to such concepts and parts of the implemented prototype.

As mentioned before, goals give rise to system’s requirements. These

requirements are iteratively refined until the point that each goal to be de-

signed has an assigned plan, which abstractly states how each goal should

be targeted. This only excludes those goals that were abandoned in the way,

or solved by other means. Then, for each plan, we provide diagrammatic de-

scriptions that detail the process followed by the agent, his/her interactions

with other agents and their internal behavior. Alongside, agents composing

an information system are modeled as agent classes and resources turn into

object classes. Later, both agents and objects may be turned into code using

an agent-oriented framework or an object-oriented programming language.

In this thesis, we experimented the former, using the Java Agent Develop-

ment Framework (JADE). Moreover, some of the objects realize the system

persistence, being converted into database tables or XML files, for example.

Besides objects comprehended in the domain (i.e. the former resources),

some of the agent’s beliefs are also turned into persistent objects, hence

Research Questions Revisited 289

constituting available information for agent’s consultation and update.

Agents’ interaction happens through message passing, which consist in

speech act representation, such as ‘inform’, ‘acknowledgment’ or ‘request’

messages, containing a sender, a receiver and some content parameters. If

an agent framework is used for implementation, these messages are directly

implemented into codes. Otherwise, such mechanism needs to be coded

from scratch. Dependencies between agents early captured in the require-

ments’ analysis or architectural design are transformed into commitments

in detailed design. These constructs help regulate contracts between agents,

serving during implementation as important indications of where exception

handling mechanism should be heavily cared for. Finally, agent’s reactive

behavior is captured with the use of reaction rules. Such rules may be di-

rectly implemented, in case a rule-based programming language is applied.

Conversely, as is the case of our system, these rules typically turn into “if-

then-else” structures coded into agent’s behavior files.

7.2.3 Using KARe to Support Constructivist KM

Research question number three (RQ 3) concerns the second contribution of

this work, i.e. the development of a socially-aware recommender agent to

support Constructivist KM. The KARe system was carefully tailored to meet

the requirements elicited and analyzed in chapter 4, following ARKnowD’s

application. These requirements mirrored some of the Constructivist KM

building blocks defined in chapter 2. Table 7.1 shows the relations between

KARe main requirements and the Constructivist KM building blocks.

The first requirement refers to how the knowledge assets are organized and

shared. KARe allows knowledge sharing following a peer-to-peer model. In

other words, a user connected to others in a network keeps his/her knowledge

artifacts stored in his/her own personal computer, thus maintaining full con-

trol over them. This gives full autonomy to the user, since he/she can share

artifacts on will, besides being able to update or take items down. Mean-

while, while these resources are available, the other peers in the network

may access them through the recommendation mechanism. This network of

290 Conclusion

Requirements
Constructivist KM
Building Blocks

allowing members to keep
control of their knowledge as-
sets while sharing knowledge

autonomy and non-
hierarchical knowledge
sharing structure

supporting members to ask
and answer questions

social interaction and physical
meaningful artifacts

providing information on
experts regarding particular
knowledge

context

providing personalized help to
the users

context

Table 7.1: Relation between KARe’s requirements and the Constructivist
KM building blocks

peers is a flat structure, thus reflecting the non-hierarchical knowledge shar-

ing structure we claim is necessary to guarantee effective knowledge flows

within the organization. This is based on the assumption that all organiza-

tion’s members are valuable knowledge sources despite of their organizational

position or level of experience.

KARe supports knowledge sharing mainly through questions and answers

(the second requirement on table 7.1). This is related to the need to sup-

port social interaction and to provide sharing of physical meaningful ar-

tifacts. Social interaction is essential to enable tacit knowledge sharing,

which is paramount for triggering innovation. Tacit knowledge relates to

people’s internal mental models, and personal values and experience. This

is hardly captured in codified pieces of information but it is possible ex-

changed through direct interaction between people (Nonaka and Takeuchi,

1995). This way, KARe simulates the natural processes of seeking and pro-

viding knowledge within organizations, where people frequently try to solve

their doubts and problems by directly asking a nearby or trusted colleague.

In addition to that, as suggested by Freire and Fagundez (1992), a question

is the “first knowledge sparkle” and is helpful for the knowledge seeker him-

Research Questions Revisited 291

self to reason about the knowledge he has and misses, hence contributing to

knowledge creation since this early stage of questioning. Besides supporting

the disambiguation of tacit knowledge, this requirement also refers to the

need of exchanging knowledge through meaningful and concrete artifacts.

In KARe, these artifacts consist the exchanged questions and answers, be-

sides working documents the users maintain in their local knowledge bases.

People working together or gathered in communities of practice profit from

sharing artifact in diverse ways. For once, they feel important and receive

recognition for sharing with others the product of their work or those ar-

tifacts they find valuable. Besides, these artifacts are kept in the network,

allowing further use when a needing situation presents itself. And finally,

artifacts may be replicated in several nodes of the network, guaranteeing

that essential knowledge is maintained in the organization even if members

leave it. These three aspects are all in the core of KM.

Requirements number three and four refer to the need to provide the right

context for knowledge sharing. Simply asking people to register how they

do their work may seem forced and detached from daily practices. Instead,

if knowledge sharing happens as part of the daily routine of the organiza-

tion, imitating natural social processes as proposed by KARe, knowledge is

likely to flow more easily. In this sense, support to find the right piece of

knowledge when needed is essential to motivate people to actively use the

system. KARe does this by helping users locate expertise knowledge, and

by providing them with personalized assistance. This is attained with the

use of user models that capture social and cognitive characteristics of users,

such as their organizational role, their trusted colleagues, and their exper-

tise and interests. In particular, users’ expertise and interest is explicitated

through taxonomic structures used to classify users’ working documents and

to contextualize questions and answers. These tree-like structures describe

the domains related to the knowledge artifacts maintained by a specific user,

thus being directly related both to their interest and to their expertise. The

taxonomies are valuable pieces of knowledge in themselves, besides serving

as the foundation for the developed recommendation mechanism.

The remaining of this section specifically focuses on three sub-issues re-

292 Conclusion

lated to this general KARe-related research question.

Creating Recommendations Based on Organizational Members So-

cial and Cognitive Aspects

One of the main assumptions behind this work is that KM should be sup-

ported with less focus on technology and more focus on people. Conse-

quently, the peculiarities of the organizational environment and the personal

characteristics of its members must be taken into account (refer to RQ 3.1).

KM systems currently in use within real organizations often give exag-

gerated importance to the stored knowledge assets, failing to connect them

to the people that create and use such artifacts. These same systems often

provide searching support based on the content of the available artifacts.

Most of the systems relying on user modeling, generally limit themselves in

providing hints on user’s interest and expertise regarding certain content.

KARe goes beyond this when, besides user’s expertise and interest, it also

takes into consideration the following characteristics:

• organizational role;

• trustability;

• reliability;

• availability;

• collaborative level;

• presentation preferences;

• physical context: time and location.

Some of the characteristics above are initially stated by the user of the

system, such as organizational role, availability to ask and answer questions,

trustability (captured in a list of trusted colleagues), and presentation pref-

erences. Others are calculated throughout interactions with other users. The

collaborative level of other peers in relation to a give user, for instance, is

Research Questions Revisited 293

calculated based on the number of responses the peers provide to the user.

Besides, the peers’ reliability, i.e. a measure of their expertise regarding

specific themes is also attributed by the user after evaluating knowledge re-

ceived by specific peers. Time and location should support the system in

understanding what piece of knowledge to deliver to the user and in which

presentation format. Although the proposal and design of these features

are clear, their implementation in KARe remains future work. Chapter 5

presents a detailed discussion on each of these cognitive and social charac-

teristics, besides analyzing how they were targeted in other system proposals

coming from the KM and e-learning research areas.

KARe works both reactively (i.e. at user’s request) and proactively (i.e.

by anticipating user’s needs). On on hand, reactive recommendations are

triggered by the user asking a question. On the other hand, proactive help

is granted through the support to proactive periodic search, pending ques-

tions (i.e. questions the users have asked and remain unanswered), and by

recommending other peers having user’s related interests and expertise. A

comprehensive description and design of such functionalities can be found

in chapter 5.

Agent-oriented Recommender System Architecture

Having learned that KARe supports Constructivist KM based on user’s so-

cial and cognitive characteristics and following a peer-to-peer model, a dis-

cussion on the most appropriate system architecture comes next (RQ 3.2).

This discussion is also subject of chapter 5, in which the architectural and

detailed design of KARe are presented.

Three agents compose KARe: the Artifact Manager (AM), the Per-

sonal Assistant (PA) and the Broker. In general, the AM and the PA

collaborate to accomplish the recommendation mechanism, allowing the user

to manage his/her personal knowledge base, handling other peer’s knowl-

edge requests and providing recommendations to the user. While these two

agents reflect KARe’s peer-to-peer model, the Broker provides a kind of cen-

tralized support, by endowing the PA with knowledge about the best peers

294 Conclusion

to answer a particular direct knowledge request (direct here refers to direct

interaction with another peer), and aiding the PA on finding similar peers

on behalf of his/her associated user. Each peer in the network has his/her

own PA and AM (installed in his/her personal computer), while the Broker

is not associated to any particular peer and may be installed in one or more

computers.

Taking the paragraph above into consideration, we conclude that KARe

is not a pure peer-to-peer architecture, but a hybrid one instead. This

means that although mostly peer-to-peer, this architecture has a server el-

ement (here, the Broker) that provides supporting functionalities, generally

related to locating a peer (Oram, 2001). In this sense, contrarily to other

KM systems following the pure approach (such as KEEx (Bonifacio et al.,

2004) for example), KARe aims at profiting from the Broker’s flexibility to

provide more personalized support in comparison to these systems, taking

into account the cognitive and social characteristics described in the previous

section. One problem with the hybrid approach relates to safety, i.e. dealing

with possible failure in the accessibility of the computer hosting the Broker.

Nevertheless, this problem may be overcome by the replication of the Bro-

ker in several computers to diminish the probability of non-accessibility. In

addition to this, the PA may have alternative ways of handling a direct

knowledge request when the Broker is unavailable.

In order to avoid intrusiveness, we elaborated a privacy policy controlling

the access to the user model. According to this policy, only the PA has

full view and access to the user model. The user is able to set himself the

features he/she allows the Broker to view, thus limiting the access of other

peers concerning his/her personal characteristics.

Developing an Effective Recommendation Technique

In the core of any recommender system is the mechanism used to provide

users with valuable recommendations (RQ 3.3). KARe provides this mainly

in two ways. Primarily, it allows users to access existing knowledge assets

(documents, and pairs of questions and answers) available in the network of

Future Work 295

peers. However, if no available knowledge asset fulfills the user’s particular

need, a peer can be directly contacted. Chapter 6 describes the algorithm

we developed to recommend existing knowledge artifacts satisfying user’s

knowledge requests. Besides presenting the algorithm in detail, this chapter

also describes how it was implemented and accessed.

The developed algorithm is based on information retrieval techniques and

profits from the taxonomic structures classifying the system’s knowledge ar-

tifacts. Results of the performed evaluation experiment shows that there are

considerable gains when using our approach compared to a standard retriev-

ing approach. In particular, our technique is superior in finding artifacts that

are related to the user’s query, obtaining a result set with less noise than the

standard approach. Less noise means that less unrelated and more focused

items compose the result set. Moreover, the proposed approach attains im-

provements concerning computational complexity, by reducing the search

space of the algorithm. In other words, not all documents of the collection

are inspected, but solely those pertaining to regions where a satisfactory

answer is likely to be stored.

7.3 Future Work

A good research work is not the one that covers all the gaps, but the one

that present consistent results while also opening way for further investiga-

tions and endeavors. We hope to have fulfilled both aims. Subsequently to

the results just reported, this section is dedicated to the presentation of our

future work. As this thesis presents two main contributions, i.e. the AR-

KnowD methodology and the KARe system, this section is correspondingly

subdivided in sub-sections 7.3.1 and 7.3.2.

7.3.1 Moving Forward with the Work on ARKnowD

Further work on ARKnowD may be viewed according to theoretical and

practical aspects. Theoretically, we hope to move forward with the work on

the fundaments behind our methodology, given by the ontology of agent-

296 Conclusion

oriented concepts, presented in chapter 3. On one hand, we hope to cover in

our ontology, the remaining concepts from the Tropos notation that were not

addressed in this thesis, such as the concepts of softgoal and contribution.

On the other hand, we aim at incorporating elements targeted by agent or-

ganization frameworks, especially the deontic notions of responsibility and

obligation, and the concept of norm. This may result in adding new con-

structs to ARKnowD’s language, possibly also affecting the methodology’s

life cycle.

As for the practical aspects, two main directions are identified. First, AR-

KnowD must undergo experimentation in real environments. The scenario

applied in this thesis is fictitious, thus resulting in a very controlled testing

environment. Although we were careful to be realistic and to illustrate real

situations, we are sure that when applied to a real case, some of our as-

sumptions will be confirmed, but also new insights and ideas will emerge to

enhance our methodology. Still in the realm of practice, we hope the work

on an agent-oriented software engineering environment comprehending both

Tropos and AORML (and thus, ARKnowD) proceeds, as this initiative is

of great relevance to allow analysts and designers to effectively apply our

methodology in practice.

7.3.2 Future Developments on KARe

Additional implementation and experimentation work are necessary to con-

solidate KARe as a KM supporting system. For now, the idea behind KARe

is clear and the system was fully designed, but we have only managed to

implement a prototype including KARe’s core recommendation mechanism.

Hence, more work remains to be done, and the following items summarize

KARe’s missing elements.

• the Broker agent should be implemented to enable the referral re-

garding the best peer to respond to a particular knowledge request,

enabling users to directly answer incoming questions from other peers.

This comprehends the implementation of the complete user model,

Future Work 297

including all user’s cognitive and social characteristics, since only ex-

pertise and interest are considered in the available prototypes;

• the Peer Assistant (PA) should be complemented with further func-

tionality, including proactive periodic searches, handling pending ques-

tions (which has only been implemented in the mobile prototype) and

recommending similar peers to his/her associated user.

Regarding the implemented prototypes, a few gaps remain to be filled.

To begin with, our recommendation technique may be enhanced by the use

of smoothing techniques proposed by (Sona et al., 2004). Such an approach

embeds more information in the representation of KARe’s taxonomy con-

cepts, thus improving at least in theory, the performance of the query scope

reduction step of our algorithm. However, to be completely sure about this

assumption, we must implement such techniques in our prototype and sub-

mit it to further experimentation.

In addition to this, scalability issues must be targeted before KARe can

become a real product. At the moment, we only performed tests using two

peers and we can already preview that some problems may arise if more

peers are included. This issue particularly regards our desktop prototype

and mainly results from the fact that when receiving a knowledge request

from the user, the PA broadcasts such request to all other PAs in the net-

work. As previously reported in the conclusion of chapter 6, we foresee

two possibilities to overcome this problem. The first possibility regards the

beforehand calculation of the nearest neighbor peer to answer to requests

on specific subjects. Thus, the PA would know which other PAs are more

likely to have the answer it seeks, being able to efficiently forward incoming

knowledge requests. The other idea we could explore alternatively or in ad-

dition to this one is to set up a similarity threshold, limiting the number of

documents exchanged between Peer Assistants to reduce network traffic.

Further work regarding system’s experimentation also remains to be done.

We have been able so far to conduct an experiment that although highly

relevant, limits itself to validating the proposed recommendation technique.

Nevertheless, system’s usability has yet to be assessed. In this sense, we

298 Conclusion

believe the remaining functionality of KARe must be implemented before

a usability test can be planned. Next to this, the nature of the tasks that

KARe supports (i.e. simulating real social processes related to questioning

and answering) suggest that instead of using a controlled environment, this

usability test is likely to produce better results if the system is adopted in

a real organization. After some time experimenting with KARe’s document

repository and questioning and answering functionalities, the users should

be able to attest for sure the validity of the system to enhance their daily

practices.

Future Work 299

300 Conclusion

Bibliography

Abecker, A., Bernardi, A., and Sintek, M. (2000). Proactive Knowledge

Delivery for Enterprise Knowledge Management. In Ruhe, G. and

Bomarius, F., editors, Learning Software Organizations: Methodology

and Applications, volume 1756 of LNCS. Springer-Verlag, Berlin,

Germany.

Abecker, A., Bernardi, A., and van Elst, L. (2003). Agent Technology for

Distributed Organizational Memories: the Frodo Project. In Proceedings

of the International Conference on Enterprise Information Systems

(ICEIS’03), pages 3–10, Angers, France.

Adami, G., Avesani, P., and Sona, D. (2003). Clustering Documents in a

Web Directory. In Proceedings of the 5th ACM International Workshop

on Web Information and Data Management (WIDM’03), pages 66–73,

New York, USA. ACM Press.

Alavi, M. and Leidner, D. E. (1999). Knowledge Management Systems:

Issues, Challenges and Benefits. Communication of the AIS, 1(2):1–37.

Allee, V. (1999). The Art and Practice of Being Revolutionary. Journal of

Knowledge Management, 3(2):121–131.

Allee, V. (2000). Knowledge Networks and Communities of Practice. OD

Practitioner: Journal of the Organization Development Network, 32.

Applewhite, A. (2004). The View from the Top. IEEE Spectrum,

November 2004:16–31.

301

302 BIBLIOGRAPHY

Audi, R. (1998). Epistemology: A Contemporary Introduction to the

Theory of Knowledge. Routledge, London, UK.

Avesani, P., Giunchiglia, F., and Yatskevich, M. (2005). A Large Scale

Taxonomy Mapping Evaluation. In Gil, Y. e. a., editor, International

Semantic Web Conference (ISWC), volume 3729 of LNCS, pages 67–81.

Springer-Verlag, Berlin, Germany.

Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information

Retrieval. Addison-Wesley, Boston, MA, USA.

Balabanovic, M. and Shohan, Y. (1997). Fab: Content-based, Collaborative

Recommendation. Communications of the ACM, 40(3):66–72.

Bernon, C., Cossentino, M., Gleizes, M., Turci, P., and Zambonelli, F.

(2004). A Study of Some Multi-Agent Meta-Models. In Odell, J.,

Giorgini, P., and Muller, J., editors, Agent-oriented Software Engineering

V, AOSE 2004, volume 3382 of LNCS, pages 62–77. Springer-Verlag,

Berlin, Heidelberg.

Boella, G., Damiano, R., and Lesmo, L. (1999). A Utility Based Approach

to Cooperation among Agents. In Proceedings of the Worskhop on

Foundations and applications of collective agent based systems

(ESSLLI’99), Utrecht, The Netherlands.

Bonifacio, M. and Bouquet, P. (2002). Distributed Knowledge

Management: a Systemic Approach. In Minati, G. and Pessa, E.,

editors, Emergence in Complex, Cognitive, Social and Biological

Systems. Kluwer Academic/Plenum Publishers, New York, USA.

Bonifacio, M., Bouquet, P., Mameli, G., and Nori, M. (2004).

Peer-Mediated Distributed Knowledge Management. In van Elst, L.,

Dignum, V., and Abecker, A., editors, Agent-Mediated Knowledge

Management, volume 2926 of LNAI, pages 31–47. Springer-Verlag,

Heidelberg, Germany.

BIBLIOGRAPHY 303

Bottazzi, E. and Ferrario, R. (2005). A Path to an Ontology of

Organizations. In Proceedings of the Workshop on Vocabularies,

Ontologies and Rules for The Enterprise (VORTE’05), Enschede, The

Netherlands. Centre for Telematics and Information Technology (CTIT).

Bouquet, P., Serafini, L., and Zanobini, S. (2003). Semantic Coordination:

a New Approach and an Application. In Fensel, D., Sycara, K., and

Mylopoulos, J., editors, Proceedings of the Second International

Semantic Web Conference, volume 2870 of LNCS, pages 130–145.

Springer-Verlag, Berlin, Germany.

Bratman, M. E. (1987). Intentions, Plans, and Practical Reason. Harvard

University Press, Cambridge, MA, USA.

Brazelton, J. and Gorry, G. A. (2003). Creating a Knowledge-Sharing

Community: If You Build It, Will They Come? Communications of the

ACM, 46(2):23–25.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., and Perini, A.

(2004). Tropos: An Agent-Oriented Software Development Methodology.

International Journal of Autonomous Agents and Multi Agent Systems,

8(3):203–236.

Brown, J. S. (1991). Research that Reinvents the Corporation. In Harvard

Business Review on Knowledge Management, pages 153–180. Harvard

Business School Press, Boston, MA, USA.

Brown, J. S. and Duguid, P. (2000). Balancing Act: How to Capture

Knowledge Without Killing it. In Harvard Business Review on

Knowledge Management, pages 45–59. Harvard Business School Press,

Boston, MA, USA.

Bull, S., Greer, J., McCalla, G., Kettel, L., and Bowes, J. (2001). User

Modelling in I-Help: What, Why, When and How. In Bauer, M.,

Gmytrasiewicz, P., and Vassileva, J., editors, User Modeling 2001: 8th

International Conference, volume 2109 of LNCS, pages 117–126.

Springer-Verlag, Heidelberg, Germany.

304 BIBLIOGRAPHY

Bunge, M. (1979). Ontology II: A World of Systems. D. Reidel Publishing,

New York, USA.

Caire, G., Garijo, F., Gomez, J., Pavon, J., Leal, F., Chainho, P., Kearney,

P., Stark, J., Evans, R., and Massonet, P. (2001). Agent Oriented

Analysis using MESSAGE/UML. In Wooldridge, M., Weiss, G., and

Ciancarini, P., editors, Revised Papers and Invited Contributions from

the Second International Workshop on Agent-Oriented Software

Engineering II, volume 2222 of LNCS, pages 119–135. Springer-Verlag,

Berlin, Germany.

Castelfranchi, C. (1995). Commitments: From Individual Intentions to

Groups and Organizations. In Proceedings of the First International

Conference on Multi-Agent Systems, Cambridge, MA, USA. AAAI-Press

and MIT Press.

Castelfranchi, C. (2004). Trust Mediation in Knowledge Management and

Sharing. In Jensen, C., Poslad, S., and Dimitrakos, T., editors,

Proceedings of the Second International Conference on Trust

Management (iTrust’04), volume 2995 of LNCS, pages 304–318.

Springer-Verlag, Berlin, Germany.

Castelfranchi, C., Cesta, A., and Miceli, M. (1992). Dependence Relations

among Autonomous Agents. In Demazeau, Y. and Werner, E., editors,

Decentralized AI - 3. Elsevier, Amsterdam, The Netherlands.

Castelfranchi, C. and Falcone, R. (1998). Towards a Theory of Delegation

for Agent-Based Systems. Robotics and Autonomous Systems,

24(24):141–157.

Chen, G. and Kotz, D. (2000). A Survey of Context-Aware Mobile

Computing Research. Technical Report TR2000-381, Dept. of Computer

Science, Dartmouth College, USA.

Chen, H. and Dhar, V. (1989). Online Query Refinement on Information

Retrieval Systems: A Process Model of Searcher/System Interactions. In

BIBLIOGRAPHY 305

Proceedings of the 13th annual international ACM SIGIR conference on

Research and development in information retrieval, pages 115–133, New

York, NY, USA. ACM Press.

Chen, J. Q., Lee, T. E., Zhang, R., and Zhang, Y. J. (2003). Systems

Requirements for Organizational Learning. Communications of the

ACM, 46(12):73–78.

Chung, L. K., Nixon, B. A., Yu, E., and Mylopoulos, J. (2000).

Non-functional Requirements in Software Engineering. Kluwer

Publishing, New York, NY, USA.

Conklin, J. (1997). Designing Organizational Memory: Preserving

Intellectual Assets in a Knowledge Economy. Technical report,

CogNexus Institute, USA.

Dam, K. H. and Winikoff, M. (2003). Comparing Agent-oriented

Methodologies. In Giorgini, P., Henderson-Sellers, B., and Winikoff, M.,

editors, Agent-Oriented Information Systems: 5th International

Bi-Conference Workshop, volume 3030 of LNAI, pages 78–93.

Springer-Verlag, Berlin, Germany.

Davenport, T. H. and Prusak, L. (1998). Working Knowledge: How

Organizations Manage What They Know. Harvard Business School

Press, Boston, MA, USA.

Davies, J., Duke, A., and Stonkus, A. (2003a). OntoShare: Evolving

Ontologies in a Knowledge Sharing System. In Davies et al. (2003b),

pages 161–177.

Davies, J., Fensel, D., and van Harmelen, F., editors (2003b). Towards the

Semantic Web: Ontology-driven Knowledge Management. Wiley, West

Sussex, UK.

de La Taille, Y. (1992). O Lugar da Interacao Social na Concepcao de Jean

Piaget (in Portuguese) (The Role of Social Interaction in the Conception

of Jean Piaget). In de La Taille, Y., Oliveira, M. K., and Dantas, H.,

306 BIBLIOGRAPHY

editors, Piaget, Vygotsky e Wallon, Teorias Psicogenticas em Discusso

(in Portuguese) (Piaget, Vygotsky and Wallon: A Discussion of

Psychogenetic Theories), pages 11–21. Summun, Sao Paulo, SP, Brazil,

13 edition.

Delaitre, S. and Moisan, S. (2000). Knowledge Management by Reusing

Experience. In 12th International Conference EKAW2000, volume 1937

of LNAI, pages 304–311. Springer-Verlag, Berlin, Germany.

Desouza, K. C. (2003). Barriers to Effective Use of Knowledge

Management Systems in Software Engineering. Communications of the

ACM, 46(1):99–101.

Di Marzo Serugendo, G., Karageorgos, A., Rana, O. F., and Zambonelli,

F. E. (2004). Engineering Self-Organising Systems: Nature-Inspired

Approaches to Software Engineering, volume 2977 of LNAI.

Springer-Verlag, Berlin, Germany.

Dignum, V. (2004a). A Model for Organizational Interaction: Based on

Agents, Founded in Logic. PhD thesis, Utrecht University, The

Netherlands.

Dignum, V. (2004b). An Overview of Agents in Knowledge Management.

Technical Report UU-CS-2004-017, Institute of Information and

Computing Sciences, Utrecht University, The Netherlands.

Dignum, V., Sonenberg, L., and Dignum, F. (2004). Dynamic

Reorganization of Agent Societies. In Proceedings of the Workshop on

Coordination in Emergent Agent Societies at ECAI’04, Valencia, Spain.

Dignum, V. and van Eeden, P. (2003). Seducing, Engaging and Supporting

communities at Achmea. In Proceedings of the 4th European Conference

on Knowledge Management, Oxford, UK, Oxford, UK.

Doyle, M. D., Ang, C. S., Martin, D. C., and Noe, A. (1996). The visible

embryo project: Embedded program objects for knowledge access

BIBLIOGRAPHY 307

creation and management through the world wide web. Computarized

Medical Imaging and Graphics, 20(6):423–431.

Drescher, G. L. (1991). Made-Up Minds: A Constructivist Approach to

Artificial Inteligence. MIT Press, Cambridge, MA, USA.

Ellis, C. A., Gibbs, S. J., and Rein, G. L. (1991). Groupware: Some Issues

and Experiences. Communications of the ACM, 34(1):38–58.

Esfandiari, B. and Chandrasekharan, S. (2001). On How Agents Make

Friends: Mechanisms for Trust Acquisition. In Proceedings of the Fourth

Workshop on Deception, Fraud and Trust in Agent Societies, pages

27–34, Montreal, Canada.

Esteva, M., Padget, J., and Sierra, C. (2002). Formalizing a Language for

Institutions and Norms. In Meyer, J.-J. C. and Tambe, M., editors,

Intelligent Agents VIII, volume 2333 of LNAI, page 348366.

Springer-Verlag, Berlin, Germany.

Farias, C. R. G. (2002). Architectural Design of Groupware Systems: a

Component-Based Approach. PhD thesis, University of Twente, The

Netherlands.

Fensel, D., Staab, S., Studer, R., van Harmelen, F., and Davies, J. (2003).

A Future Perspective: Exploiting Peer-2-Peer and the Semantic Web for

Knowledge Management. In Davies, J., Fensel, D., and van Harmelen,

F., editors, Towards the Semantic Web: Ontology-driven Knowledge

Management, pages 245–264. Wiley, West Sussex, UK.

Ferber, J., Gutknecht, O., and Michel, F. (2004). From Agents to

Organizations: An Organizational View of Multi-agent Systems. In

Giorgini, P., Mller, J. P., and Odell, J., editors, AOSE 2003, volume

2935 of LNCS, page 214230. Springer-Verlag, Berlin, Germany.

Fischer, G. and Ostwald, J. (2001). Knowledge Management: Problems,

Promises, Realities, and Challenges. IEEE Intelligent Systems,

16(1):60–72.

308 BIBLIOGRAPHY

Fischer, K., Muller, J. P., and Pischel, M. (1996). A Pragmatic BDI

Architecture. In Wooldridge, M., Muller, J. P., and Tambe, M., editors,

Intelligent Agents II: Agent Theories, Architectures and Languages,

volume 1037 of LNAI, pages 203–218. Springer, Berlin, Germany.

Freire, P. (1970). Pedagogy of the Oppressed. Continuum Intl Pub Group,

New York, NY, USA.

Freire, P. and Fagundez, A. (1992). Learning to Question: A Pedagogy of

Liberation. Continuum Intl Pub Group, New York, NY, USA.

Gandon, F., Poggi, A., Rimassa, G., and Turci, P. (2002). Multi-Agent

Corporate Memory Management System. Journal of Applied Artificial

Intelligence, 16(9-10):699–720.

Gangemi, A., Prisco, A., Sagri, M., Steve, G., and Tiscornia, D. (2003).

Some Ontological Tools to Support Legal Regulatory Compliance, with a

Case Study. In Meersman, R. and Zahir, T., editors, On the Move to

Meaningful Internet Systems 2003: OTM 2003 Workshops, volume 2889

of LNCS, pages 607–620. Springer-Verlag, Berlin, Germany.

Garcia-Barrios, V. M., Gutl, C., Preis, A. M., Andrews, K., and Pivec, M.

(2004). AdELE: A Framework for Adaptive E-Learning through Eye

Tracking. In Proceedings of the 4th International Conference on

Knowledge Management (I-Know’04), pages 609–616, Graz, Austria.

Garvin, D. A. (1993). Building a Learning Organization. In Harvard

Business Review on Knowledge Management, pages 47–80. Harvard

Business School Press, Boston, MA, USA.

Giorgini, P., Mylopoulos, J., and Sebastiani, R. (2005). Goal-Oriented

Requirements Analysis and Reasoning in the Tropos Methodology. In

Engineering Applications of Artificial Intelligence, 18(2).

Goguen, J. A. and Linde, C. (1993). Techniques for Requirements

Elicitation. In Proceedings of Requirements Engineering ’93, pages

152–164, Piscataway, NJ, USA. IEEE Computer Society.

BIBLIOGRAPHY 309

Gongla, P. and Rizzuto, C. R. (2001). Evolving communities of practice:

IBM Global Services experience. IBM Systems Journal, 40(4):842–862.

Good, N., Schafer, J. B., Konstan, J., Borchers, A., Herlocker, B., and

Riedl, J. (1999). Combining Collaborative Filtering with Personal

Agents for Better Recommendations. In Proceedings of the 1999

Conference of the Americian Association of Artificial Intelligence

(AAAI’99), pages 439–446, Cambridge, MA, USA. MIT Press.

Gruninger, M., Atefi, K., and Fox, M. (2000). Ontologies to Support

Process Integration in Enterprise Engineering. Computational and

Mathematical Organization Theory, 6(4):381–394.

Guizzardi, G. (2005). Ontological Foundations for Structural Conceptual

Models. PhD thesis, University of Twente, The Netherlands.

Guizzardi, G. and Wagner, G. (2005). Some Applications of a Unified

Foundational Ontology in Business Modeling. In Rosemann, M. and

Green, P., editors, Ontologies and Business Systems Analysis, pages

345–367. Idea Group, London, UK.

Guizzardi, R., Dignum, V., Perini, A., and Wagner, G. (2005). Towards an

Integrated Methodology to Develop KM Solutions with the Support of

Agents. In Proceedings of the International Conference on Integration of

Knowledge Intensive Multi-Agent Systems (KIMAS’05), pages 221–226,

Boston, MA, USA. IEEE.

Guizzardi, R. and Perini, A. (2005). Analyzing Requirements of Knowledge

Management Systems with the Support of Agent Organizations. Journal

of the Brazilian Computer Society (JBCS) - Special Issue on Agents

Organizations, 11(1):51–62.

Guizzardi, R. S. S., Aroyo, L., and Wagner, G. (2004a). Agent-oriented

Knowledge Management in Learning Environments: A Peer-to-Peer

Helpdesk Case Study. In van Elst, L., Dignum, V., and Abecker, A.,

editors, Agent-Mediated Knowledge Management, volume 2926 of LNAI,

pages 57–72. Springer-Verlag, Heidelberg, Germany.

310 BIBLIOGRAPHY

Guizzardi, R. S. S., Perini, A., and Dignum, V. (2003). Using Intentional

Analysis to Model Knowledge Management Requirements in

Communities of Practice. Technical Report TR-CTIT-03-53, Centre for

Telematics and Information Technology (CTIT), The Netherlands.

Guizzardi, R. S. S., Perini, A., and Dignum, V. (2004b). Providing

Knowledge Management Support to Communities of Practice through

Agent-oriented Analysis. In Proceedings of the 4th International

Conference on Knowledge Management, Graz, Austria (I-Know’04),

pages 320–328, Graz, Austria.

Hahn, J. and Subramani, M. R. (2000). A Framework of Knowledge

Management Systems: Issues and Challenges for Theory and Practice.

In Proceedings of the 21st International Conference on Information

systems (ICIS ’00), pages 302 – 312, Atlanta, GA, USA. Association for

Information Systems.

Hansen, M. T., Nohria, N., and Tierney, T. (1999). What’s Your Strategy

for Managing Knowledge. In Harvard Business Review on Knowledge

Management, pages 61–86. Harvard Business School Press, Boston, MA,

USA.

Hassan, I. M., Rafea, A. A. E., and Rasmy, M. (2004). Configuration

Irrigation Schedule Based on Expert Systems and Operations Research.

In Proceedings of the Fifth International Workshop on Artificial

Intelligence in Agriculture (AIA’04), Oxford, UK. Elsevier.

Henderson-Sellers, B. (2005). Creating a Comprehensive Agent-Oriented

Methodology: Using Method Engineering and the OPEN Metamodel. In

Henderson-Sellers, B. and Giorgini, P., editors, Agent-Oriented

Methodologies, pages 368–397. Idea Group, London, UK.

Henninger, S. (2001). Turning Development Standards into Repositories of

Experiences. Software Process: Improvement and Practice, Volume

6(3):141–155.

BIBLIOGRAPHY 311

Hubner, J. F., Sichman, J. S., and Boissier, O. (2002). A Model for the

Structural, Functional, and Deontic Specification of Organizations in

Multiagent Systems. In Bittencourt, G. and Ramalho, G. L., editors,

Advances in Artificial Intelligence: 16th Brazilian Symposium on

Artificial Intelligence (SBIA’02), volume 2507 of LNAI, pages 118–128.

Springer-Verlag, Berlin, Germany.

Iglesias, C. A., Garijo, M., and Gonzalez, J. C. (1999). A Survey of

Agent-Oriented Methodologies. In Muller, J., Singh, M., and Rao, A.,

editors, Intelligent Agents V: Agents Theories, Architectures and

Languages, volume 1555 of LNCS, pages 317–330. Springer-Verlag,

London, UK.

Iglesias, C. A., Garijo, M., Gonzalez, J. C., and Velasco, J. R. (1998).

Analysis and Design of Multiagent Systems Using MAS-CommonKADS.

In Singh, M., Rao, A., and Wooldridge, M., editors, Intelligent Agents

IV, volume 1365 of LNAI, pages 313–326. Springer-Verlag, Berlin,

Germany.

Jennings, N. R., Sycara, K. P., and Wooldridge, M. (1998). A Roadmap of

Agent Research and Development. Journal of Autonomous Agents and

Multi-Agent Systems, 1(1):7–36.

Juan, T., Pearce, A., and Sterling, L. (2002). ROADMAP: Extending the

Gaia Methodology for Complex Open Systems. In Proceedings of the

International Conference on Autonomous Agents and Multiagent

Systems (AAMAS’02), pages 3–10, New York, USA. ACM Press.

Juan, T., Sterling, L., Martelli, M., and Mascardi, V. (2003). Customizing

AOSE Methodologies by Reusing AOSE Features. In Proceedings of the

2nd Iinternational Joint Conference on Autonomous Agents and

Multiagent Systems (AAMAS’03), pages 113–120, New York, USA.

ACM Press.

Juan, T., Sterling, L., and Winikoff, M. (2004). Assembling Agent

Oriented Software Engineering Methodologies from Features. In

312 BIBLIOGRAPHY

Giorgini, P., Muller, J. P., and Odell, J., editors, AOSE 2003, volume

2935 of LNCS, pages 198–209. SpringerVerlag, Berlin, Germany.

Kankanhalli, A., Tanudidjaja, F., Sutanto, J., and Tan, B. C. Y. (2003).

The Role of IT in Successful Knowledge Management Initiatives.

Communications of the ACM, 46(9):69–73.

Karlin, S. (2004). Companies find new ways to harness their engineers

creativity. IEEE Spectrum, November 2004:67–68.

Kavakli, E. and Loucopoulos, P. (2005). Goal Modeling in Requirements

Engineering: Analysis and Critique of Current Methods. In Krogstie, J.,

Halpin, T., and Siau, K., editors, Information Modeling Methods and

Methodologies, pages 102–124. Idea Group, London, UK.

Kruchten, P. (2000). The Rational Unified Process: An Introduction.

Addison-Wesley, Boston, MA, USA.

Labrou, Y., Finin, T., and Peng, Y. (1999). Agent Communication

Languages: The Current Landscape. IEEE Intelligent Systems,

14(2):45–52.

Lave, J., Wenger, E., Pea, R., Brown, J. S., and Heath, C. (1991). Situated

Learning: Legitimate Peripheral Participation. Learning in Doing:

Social, Cognitive & Computational Perspectives. Cambridge University

Press, Cambridge, MA, USA.

Lehner, F., Maier, R., and Klosa, O. (1998). Organisational Memory

Systems: Application of Advanced Database & Network Technologies in

Organisations. In Proceedings of the 2nd International Conference on

Practical Aspects of Knowledge Management (PAKM’98), pages

14/1–14/12, Basel, Switzerland. CEUR-Ws.org.

Loucopoulos, P. and Kavakli, E. V. (1999). Enterprise Knowledge

Management and Conceptual Modelling. In Selected Papers from the

Symposium on Conceptual Modeling, Current Issues and Future

Directions, volume 1565 of LNCS, pages 123–143. Springer-Verlag.

BIBLIOGRAPHY 313

Ludermir, P. G. (2005). Supporting Knowledge Management using a

Nomadic Service for Artifact Recommendation. Master’s thesis,

University of Twente, The Netherlands.

Ludermir, P. G., Guizzardi, R. S. S., and Sona, D. (2005). Finding the

Right Answer: An Information Retrieval Approach Supporting

Knowledge Sharing. In Proceedings of the Workshop on Agent Mediated

Knowledge Management (AMKM’05).

Luger, G. F. (2005). Artificial Intelligence: Structures and Strategies for

Complex Problem Solving. Addison-Wesley, Boston, MA, USA, 5th

edition.

Mahoney, M. (2004). What is constructivism and why is it growing?

Contemporary Psychology, 49:360–363.

Mantovani, G. (1996). Social Context in HCI: A New Framework for

Mental Models, Cooperation, and Communication. Cognitive Science,

20:237–269.

Montaner, M., Lopez, B., and de la Rosa, J. L. (2003). A Taxonomy of

Recommender Agents on the Internet. Artificial Intelligence Review,

19:285–330.

Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M.,

Palmer, M., and Risch, T. (2002). EDUTELLA: P2P Networking

Infrastructure Based on RDF. In Proceedings of 11th World Wide Web

Conference (WWW2002), pages 604–615, New York, USA. ACM Press.

Newell, S., Scarbrough, H., Swan, J., and Hislop, D. (1999). Intranets and

Knowledge Management: Complex Processes and Ironic Outcomes. In

Proceedings of the 32nd Hawaii International Conference on System

Sciences, Piscataway, NJ, USA. IEEE Press.

Nonaka, I. and Takeuchi, H. (1995). The Knowledge Creating Company:

How Japanese Companies Create the Dynamics of Innovation. Oxford

University Press, New York, USA.

314 BIBLIOGRAPHY

Nuseibeh, B. and Easterbrook, S. (2000). Requirements Engineering: A

Roadmap. In Proceedings of International Conference on Software

Engineering (ICSE-2000), New York, USA. ACM Press.

Odell, J., Parunak, H. V. D., and Bauer, B. (2000). Extending UML for

Agents. In Proceedings of the Agent-Oriented Information Systems

Workshop at the 17th National conference on Artificial Intelligence,

pages 3–17, Austin, TX, USA.

O’Leary, D. E. (1998). Enterprise Knowledge Management. IEEE

Computer, 31(3):54–61.

Oram, A., editor (2001). Peer-to-Peer: Harnessing the Power of Disruptive

Technologies. O’Reilly, Sebastopol, CA, USA.

Orlikowski, W. J. (1992a). Learning from Notes: Organizational Issues in

Groupware Implementation. In Proceedings of The International

Conference on Computer Supported Cooperative Work (CSCW92), pages

362–369, New York, NY, USA. ACM Press.

Orlikowski, W. J. (1992b). The Duality of Technology: Rethinking the

Concept of Technology in Organizations. Organizational Science,

3(3):398–427.

Orlikowski, W. J. and Gash, D. C. (1994). Technological Frames: Making

Sense of Information Technology in Organizations. ACM Transactions

on Information Systems, 12(2):174–207.

Orlikowski, W. J., Walsham, G., Jones, M., and DeGross, J. I., editors

(1995). Information Technology and Changes in Organizational Work,

Proceedings of the IFIP WG8.2 Working Conference. Chapman and

Hall, London, UK.

Padgham, L. and Winikoff, M. (2002). Prometheus: A Pragmatic

Methodology for Engineering Intelligent Agents. In Proceedings of the

workshop on Agent-oriented methodologies at OOPSLA’02, Seattle, USA.

BIBLIOGRAPHY 315

Papert, S. (1993). The Children’s Machine: Rethinking School in the Age

of the Computer. BasicBooks, New York, NY, USA.

Parunak, H. V. D. (2000). Agents in Overalls: Experiences and Issues in

the Development and Deployment of Industrial Agent-Based Systems.

International Journal of Cooperative Information Systems, 9(3):209–228.

Pedersen, K. V. (2004). Context Based Support for Clinical Reasoning. In

Proceedings of the 4th International Conference of Knowledge

Management (I-Know’04), pages 397–404, Graz, Austria.

Perini, A., Bresciani, P., Yu, E., and Molani, A. (2004). Intentional

Analysis for Distributed Knowledge Management. In van Elst, L.,

Dignum, V., and Abecker, A., editors, Agent-Mediated Knowledge

Management, volume 2926 of LNAI, pages 351–367. Springer-Verlag,

Heidelberg, Germany.

Perini, A. and Susi, A. (2004). Developing Tools for Agent-Oriented Visual

Modeling. In Lindemann, G., Denzinger, J., Timm, I., and Unland, R.,

editors, Multiagent System Technologies, MATES 2004, volume 3187 of

LNCS, pages 169–182. Springer-Verlag.

Piaget, J. and Inhelder, B. (1969). The Psychology of the Child. Basic

Books, New York, USA.

Preece, A., Hui, K., Gray, A., Marti, P., Bench-Capon, T., Cui, Z., and

Jones, D. (2001). KRAFT: An Agent Architecture for Knowledge

Fusion. International Journal on Cooperative Information Systems, 10(1

and 2):171–195.

Pumareja, D., Bondarouk, T., and Sikkel, K. (2003). Supporting

Knowledge Sharing Isn’t Easy - Lessons Learnt from a Case Study. In

Proceedings of the Information Resource Management Association

International Conference (IRMA’03), Philadelphia, USA, pages 531–534,

Philadelphia PA, USA.

316 BIBLIOGRAPHY

Pynadath, D. V., Tambe, M., Chauvat, N., and Cavedon, L. (1999).

Toward Team-Oriented Programming. In Jennings, N. R. and Lesprance,

Y., editors, Intelligent Agents VI: Agent Theories, Architectures, and

Languages, volume 1757 of LNCS, pages 233–247. Springer-Verlag,

Berlin, Germany.

Quinn, J. B., Anderson, P., and Finkelstein, S. (1996). Managing

Professional Intellect: Making the Most of the Best. In Harvard

Business Review on Knowledge Management, pages 181–205. Harvard

Business School Press, Boston, MA, USA.

Rao, A. S. and Georgeff, M. P. (1991). Modeling Rational Agents within a

BDI-Architecture. In Proceedings of the Second International Conference

on Principles of Knowledge Representation and Reasoning (KR’91),

pages 473–484, Cambridge, MA, USA. Morgan Kaufmann Publishers.

Reimer, U., Brockhausen, P., Lau, T., and Reich, J. R. (2003).

Ontology-based Knowledge Management at Work: The Swiss Life Case

Studies. In Davies, J., Fensel, D., and van Harmelen, F., editors,

Towards the Semantic Web: Ontology-Driven Knowledge Management,

pages 197–218. Wiley, West Sussex, England.

Robertson, M., Sorensen, C., and Swan, J. (2000). Facilitating Knowledge

Creation with Groupware: A Case Study of a Knowledge Intensive Firm.

In Proceedings of the 33rd Hawaii International Conference on System

Sciences, Piscataway, NJ, USA. IEEE Press.

Sabas, A., Delisle, S., and Badri, M. (2002). A Comparative Analysis of

Multiagent System Development Methodologies: Towards a Unified

Approach. In Proceedings of the 16th European Meeting on Cybernetics

and Systems Research, pages 599–604, Vienna, Austria.

Salton, G. and McGill, M. J. (1983). Introduction to Modern Information

Retrieval. McGraw-Hill Book Company, New York, NY, USA.

Santos, L. O. B. S., Guizzardi, R. S. S., and van Sinderen, M. (2005a).

Agent-Oriented Approach to Develop Context-Aware Applications: A

BIBLIOGRAPHY 317

Case Study on Communities of Practice. Technical Report

TR-CTIT-05-20, Centre for Telematics and Information Technology

(CTIT), The Netherlands.

Santos, L. O. B. S., Guizzardi, R. S. S., and van Sinderen, M. (2005b).

Agent-Oriented Context-Aware Platforms Supporting Communities of

Practice in Health Care. In Proceedings of the Fourth International

Conference on Autonomous Agents and Multi-agent Systems (AAMAS’

05), pages 1287–1288, New York, USA. ACM Press.

Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N.,

Van de Velde, W., and Wielinga, B. (2000). Knowledge Engineering and

Management: The CommonKADS Methodology. MIT Press, Cambridge,

MA, USA.

Sen, S. and Weiss, G. (1999). Learning in Multiagent Systems. In Weiss,

G., editor, Multiagent Systems: A Modern Approach to Distributed

Artificial Intelligence, pages 259–298. MIT Press, Cambridge, MA, USA.

Shoham, Y. (1993). Agent-oriented Programming. Artificial Intelligence,

60:5192.

Sichman, J. S., Dignum, V., and Castelfranchi, C. (2005). Agents’

Organizations: A Cocise Overview. Journal of the Brazilian Computer

Society (JBCS) - Special Issue on Agents Organizations, 11(1):3–8.

Soller, A., Guizzardi, R. S. S., Molani, A., and Perini, A. (2004). SCALE:

Supporting Community Awareness, Learning and Evolvement in an

Organizational Learning Environment. In Proceedings of the 6th

International Conference of the Learning Sciences, pages 489–496, Santa

Monica, CA, USA.

Sona, D., Veeramachaneni, S., Avesani, P., and Polettini, N. (2004).

Clustering with Propagation for Hierarchical Document Classification.

Technical Report T04-04-05, ITC-IRST, Italy.

318 BIBLIOGRAPHY

Sumner, M. (1999). Knowledge Management: Theory and Practice. In

Proceedings of the Special Interest Group on Computer Personnel

Research Annual Conference (SIGCPR’99), pages 1–3, New York, NY,

USA. ACM Press.

Taveter, K. and Wagner, G. (2005). Towards Radical Agent-Oriented

Software Engineering Processes Based on AOR Modelling. In

Henderson-Sellers, B. and Giorgini, P., editors, Agent-Oriented

Methodologies, pages 277–316. Idea Group, London, UK.

Tiwana, A. (2003). Affinity to Infinity in Peer-to-Peer Knowledge

Platforms. Communications of the ACM, 46(5):76–80.

Uiterkamp, E. S. (2005). Nomadic Positioning Services for a Mobile Service

Platform. Master’s thesis, University of Twente, The Netherlands.

van Elst, L., Abecker, A., and Maus, H. (2001). Exploiting User and

Process Context for Knowledge Management Systems. In Proceedings of

the Workshop on User Modeling for Context-Aware Applications,

Sonthofen, Germany.

van Elst, L., Dignum, V., and Abecker, A. (2004). Towards

Agent-Mediated Knowledge Management. In van Elst, L., Dignum, V.,

and Abecker, A., editors, Agent-Mediated Knowledge Management,

volume 2926 of LNAI, pages 1–30. Springer-Verlag, Heidelberg, Germany.

van Lamsweerde, A., Dardenne, A., Delcourt, B., and Dubisy, F. (1991).

The KAOS Project: Knowledge Acquisition in Automated Specification

of Software. In Proceedings of the AAAI Spring Symposium Series, pages

59–62, Cambridge, MA, USA. MIT Press.

Vassileva, J. (2002). Supporting Peer-to-Peer User Communities. In

Meersman, R. and Tari, Z., editors, CoopIS/DOA/ODBASE 2002,

volume 2519 of LNCS, pages 230–247. Springer-Verlag, Berlin, Germany.

Vygotsky, L. (1978). Mind in Society. Harvard University Press,

Cambridge, MA, USA.

BIBLIOGRAPHY 319

Wagner, G. (2003). The Agent-Object-Relationship Meta-Model: Towards

a Unified View of State and Behavior. Information Systems,

28(5):475–504.

Wagner, G. (2005). AOR Modelling and Simulation: Towards a General

Architecture for Agent-Based Discrete Event Simulation. In Bresciani,

P., Giorgini, P., Henderson-Sellers, B., Low, G., and Winikoff, M.,

editors, Agent-Oriented Information Systems: 5th International

Bi-Conference Workshop, AOIS 2003, volume 3030 of LNAI, pages

174–188. Springer-Verlag, Berlin, Germany.

Weiser, M. (1994). The World is not a Desktop. ACM Interactions,

1(1):7–8.

Weiss, G., editor (1999). Multiagent Systems: A Modern Approach to

Distributed Artificial Intelligence. MIT Press, Cambridge, MA, USA.

Wenger, E. (1998). Communities of Practice: Learning, Meaning and

Identity. Cambridge University Press, New York, USA.

Wiig, K. M. (1994). Knowledge Management: The Central Management

Focus for Intelligent-Acting Organizations. Schema Press, Arlington,

TX, USA.

Winograd, T. (1995). From Programming Environments to Environments

for Design. Communications of the ACM, 38(6):65–74.

Wooldridge, M. (2002). Methodologies. In An Introduction to Multiagent

Systems, pages 225–244. Wiley & Sons, Chichester, England.

Wooldridge, M., Jennings, N. R., and Kinny, D. (2000). The Gaia

Methodology for Agent-Oriented Analysis and Design. Journal of

Autonomous Agents and Multi-Agent Systems, 3(3):285–312.

Wooldridge, M. J. (1999). Intelligent Agents. In Weiss, G., editor,

Multiagent Systems: A Modern Approach to Distributed Artificial

Intelligence, pages 27–77. MIT Press, Cambridge, MA, USA.

320 BIBLIOGRAPHY

Wooldridge, M. J. and Ciancarini, P. G. (2001). Agent-Oriented Software

Engineering: The state of the art. In Ciancarini, P. G. and Wooldridge,

M. J., editors, AOSE 2000, volume 1957 of LNCS, pages 1–25.

Springer-Verlag, Berlin, Germany.

Wooldridge, M. J. and Jennings, N. (1995). Intelligent Agents: Theory and

Practice. Knowledge Engineering Review, 10(2):115–152.

Yen, J., Yin, J., Ioerger, T. R., Miller, M. S., Xu, D., and Volz, R. A.

(2001). CAST: Collaborative Agents for Simulating Teamwork. In

Proceedings of the Seventeenth International Joint Conference on

Artificial Intelligence (IJCAI’01), pages 1135–1144, Seattle, WA, USA.

Morgan Kaufmann.

Yin, J., Miller, M. S., Ioerger, T. R., Yen, J., and Volz, R. A. (2000). A

Knowledge-based Approach for Designing Intelligent Team Training

Systems. In Proceedings of Agents’00, pages 427–434, New York, USA.

ACM Press.

Yu, B. and Singh, M. P. (2002). An Agent-based Approach to Knowledge

Management. In Proceedings of the Eleventh International Conference

on Information and Knowledge Management (CIKM ’02), pages

642–644, New York,USA. ACM Press.

Yu, E. (1995). Modeling Strategic Relationships for Process Reengineering.

PhD thesis, University of Toronto, Canada.

	Page 1

